2017/ODD/03/10/ECO-304/278

PG Odd Semester (CBCS) Exam., December-2017

ECONOMICS

(3rd Semester)

Course No. : ECOCC-304

(Advanced Econometrics—I)

Full Marks : 70 Pass Marks : 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer five questions, selecting one from each Unit

Unit—I

- **1.** (a) Define the following terms :
 - (i) Standard error of estimator
 - (ii) Standard error of regression
 - (b) Prove that for a two-variable linear regression model, $F = t^2$. Also, state the relationship between F and r^2 in the context of two-variable linear regression.

(c) A sample of 20 observations corresponding to a two-variable linear model

(2)

 $Y_i \qquad X_i \quad u_i$

where $u_i \sim N(0, 2)$ provided the following results :

 $X_{i} \quad 186 \ 2, \quad (X_{i} \quad \overline{X})^{2} \quad 215 \ 4$ $Y_{i} \quad 21 \ 9, \quad (Y_{i} \quad \overline{Y})^{2} \quad 86 \ 9$ $(X_{i} \quad \overline{X})(Y_{i} \quad \overline{Y}) \quad 106 \ 4$

Estimate and and the variance of these estimators. Also, test the statistical significance of $\hat{}$. (2+2)+5+5=14

- **2.** (a) Distinguish between—
 - *(i)* null hypothesis and alternative hypothesis;
 - (*ii*) explained sum of squares and residual sum of squares.
 - (b) What is reverse regression? Explain with an example. Also, determine the relationship between the two slope coefficients of the direct and reverse regression.

8J**/726**

(Continued)

(c) The following ANOVA table is given on the basis of OLS regression of Y on X:

Sum of squares	Value	d.f.
ESS	5602	1
RSS	698	10
TSS	6300	11

Test the hypothesis that there is no relationship between Y and X in the regression.

(d) Write a short note on likelihood ratio test. (2+2)+3+4+3=14

Unit—II

- **3.** (a) Define the following :
 - (i) Restricted model
 - (ii) Unrestricted model
 - (b) Indicate whether the following statement is true, false or uncertain : "The value of \overline{R}^2 always rises with addition of explanatory/independent variables in the model."

- (c) The following estimated equation was obtained using OLS regression for data on 64 firms :

(Standard errors are in parenthesis.) The explained sum of squares was 112.5 and the residual sum of squares was 19.5. Now answer the following :

- *(i)* Which of the slope coefficients are statistically significant at 5% level?
- (*ii*) Calculate R^2 and \overline{R}^2 .
- (iii) Calculate F statistic and interpret. $(1+1)+2+(2\times3)+2+2=14$
- **4.** (*a*) Define the following :
 - (i) Partial correlation coefficient
 - (ii) Multiple correlation coefficient
 - (b) Indicate whether the following statement is true, false or uncertain : "The coefficient of a variable in an estimated model is significantly different from zero at 20% level. If we drop this variable from the regression, then both R^2 and \overline{R}^2 will necessarily fall."

8J**/726**

(c) The following matrix gives the variance and covariances of three variables Y, X_1 and X_2 :

	Y	X_1	X_2	
Y	7 59	3 12	26 99	
X_1	—	29 16	30 80	
X_2		—	133 00	

where *Y* log of food consumption per capita, X_1 log of food price and X_2 log of disposable income per capita. Fit the consumption function for *n* 20. Also, calculate R^2 and \overline{R}^2 . $(1+1)+2+(2\times3)+2+2=14$

Unit—III

- **5.** (a) (i) Distinguish between exact and near-exact multicollinearities on the basis of a *k*-variable linear model.
 - *(ii)* Explain how near-exact multicollinearity can influence the variance of OLS estimators.
 - (b) For the three-variable linear regression model

$$\begin{array}{cccc} Y_i & & _1X_{1i} & _2X_{2i} & u_i \,, \\ & & & (u_i \sim iidN(0, \ \ ^2)), \end{array}$$

(Turn Over)

the following OLS results were obtained on the basis of 100 observations :

> SE ([^]₁) 0 785 RSS 8850 55

and $var(X_1)$ 14 75. (Symbols have their usual meanings.) Comment on the degree of multicollinearity on the basis of some suitable measures.

- (c) Bring out the basic intuition behind 'ridge regression'. Can Lagrangian optimization produce ridge estimates? If so, how? (2+3)+4+5=14
- **6.** (*a*) Briefly explain the concept of 'non-spherical' disturbances in linear regression models.
 - (b) You are asked to estimate the linear model Y_i 1 $_2X_i$ u_i on the basis of grouped data where only group means $(\overline{X}_i, \overline{Y}_i)$ are given along with number of observations in each group (n_i) . Examine whether OLS is an appropriate method of estimation in this case. If not, what method would produce efficient estimates of parameters? Explain briefly.

8J**/726**

8J/726

(Continued)

(7)

(c) Estimate the parameters of the model Y_{i} 1 $_{2}X_{i}$ u_{i} on the basis of the following data for group means, and number of observations in each group using a suitable method :

\overline{X}_{i}	į	2	3	1	5	9
\overline{Y}_i		4	7	3	9	17
n _i		12	6	11	10	11

Here \overline{X}_i and \overline{Y}_i are the arithmetic means of X and Y respectively for *i*th group. 2+6+6=14

UNIT—IV

- 7. (a) Suppose you are given data on work experience in months (X_i) and annual salaries drawn (Y_i) for samples of IT workers from four major Indian IT firms. Frame an appropriate single-equation model that can estimate the impact of experience on salary levels for all four firms separately. How would you test the following hypotheses?
 - *(i)* A unit increase in experience has the same effect on salary levels in all four firms.
 - (*ii*) Salary levels are equal across firms, irrespective of experience levels.

- (b) "Hours of reading per week does not vary across age-groups." How would you test this hypothesis on all graduates residing in a particular ward of a municipality? Outline the estimation procedure in this case.
- (a) Elaborate Tobin's censored normal regression model for truncated data.
 Examine the estimation procedure for such data.
 - (b) Compare the standard methods for measuring goodness of fit in case of qualitative dependent variable models. 9+5=14

UNIT-V

- **9.** (a) Discuss in brief, the structure of polynomial lag regression model. What are the impacts and intermediate multipliers in this context? Elaborate.
 - (b) Compute mean lag for the following polynomial lag model :
 - Y_t D(L) X_t u_t

where D(L) B(L) / A(L) and $A(L) 1 {}_{1}L; B(L) {}_{0} {}_{1}L$ with ${}_{1}$ 0, ${}_{0}$ 0, ${}_{1}$ 0. Also, examine the condition of convergence of coefficients. 7+5+2=14

(Turn Over)

8J**/726**

(Continued)

14

(9)

10. Write brief notes on any *two* of the following :

7×2=14

- (a) Adaptive expectation models
- *(b)* Rational expectations in a demand supply framework
- (c) Short- and long-run multipliers and their estimation

 $\star\star\star$