2018/ODD/03/10/ECO-103 (O)/280

PG Odd Semester (CBCS) Exam., December-2018

ECONOMICS

(1st Semester)

Course No. : ECOCC-103

(Mathematical Methods for Economics)

Full Marks : 70 Pass Marks : 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer five questions, selecting one from each Unit

Unit—I

- **1.** (a) Let A {1, 2, 3, 4, 5, 6}. Define a relation R from A to A by
 - $R \{(x, y): y x 1\}$

Write down the domain, codomain and rank of R. 2+3=5

(b) Examine each of the following relations and state in each case, giving reasons, whether it is a function or not : 3

 $\begin{array}{ll} (i) & R & \{(2, 1), (3, 1), (4, 2)\} \\ (ii) & R & \{(2, 2), (2, 4), (4, 4)\} \end{array}$

(iii) $R \{(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7)\}$

J9**/615**

(Turn Over)

(2)

(c) Given the IS equation $0 \ 3Y \ 100 \ i \ 252 \ 0$ and the LM equation $0 \ 25Y \ 200 \ i \ 176 \ 0$ Find the equilibrium level of income (Y) and rate of interest (i). 6 2. (a) Given y (16x 3)², use chain rule to find $\frac{dy}{dx}$. Then rewrite the function as $y \ \frac{1}{(16x \ 3)^2}$ and find $\frac{dy}{dx}$ by the

quotient rule. Are the answers identical?

5

- (b) Evaluate : $2 \times 2 = 4$ (i) $(x \ 3)(x \ 1)^{\frac{1}{2}} dx$
 - (ii) $x \ln x \, dx (x \ 0)$
- (c) Use the formula for a general solution to solve the following equation :

$$\frac{dy}{dt}$$
 6y 18

Is the system dynamically stable? 5

Unit—II

- **3.** (a) Draw a curve which is not strictly concave. 2
- J9/615 (Continued)

(3)

<i>(b)</i>	Which of the following quadratic functions are strictly convex? $2 \times 3=6$ (<i>i</i>) $y 9x^2 4x 8$ (<i>ii</i>) $u 9 2x^2$ (<i>iii</i>) $w 3x^2 39$				
<i>(c)</i>	For the following functions— (i) find the critical values; (ii) test for concavity to determine relative maxima or minima; (iii) check for inflection points; (iv) evaluate the function at the critical values and inflection points : 6 $y x^3 18x^2 96x 80$				
4. (a)	Given the demand function				
	P_d 113 Q^2				
	and the supply function				
	P_{s} $(Q \ 1)^{2}$				
	Find the producer's surplus. 6				
<i>(b)</i>	Given the equilibrium condition that				
	 It St where It 2 5(Yt Yt 1) and St 0 1Yt. (i) Write the equilibrium equation as a difference equation in Yt. (ii) Solve the difference equation, given Y0 8. (iii) Plot the time path for t 0 to t 7. Is the system dynamically stable? 				
J9 /615	(Turn Over)				

(4)

UNIT—III

- Compare and contrast between local **5.** (a) and global optimizations. 4
 - Find the first-order partial derivatives of (b)the following functions : 3×2=6 (i) $q \quad 20x^{0} \, {}^{6}y^{0} \, {}^{2}z^{0} \, {}^{3}$ (*ii*) z $(x^3 7y^2)^4$
 - Find the extreme values of the following (c) function :

$$Z x^2 xy 2y^2 3$$

Also examine if the function attains maxima or minima at the extreme value. 4

6. (a) A firm produces two products which are sold in two separate markets with the demand schedule

J9/615

 p_1 600 0 3 q_1 , p_2 500 0 2 q_2

Production costs are related and total cost is

TC 16 1 2 q_1 1 5 q_2 0 2 q_1q_2 If the firm wishes to maximize total profit, how much of each product should it sell? What will be the maximum profit? 4+2=6

(Continued)

(b) Given

 Q_1 50 $4P_1$ $3P_2$ $2P_3$ 0 001 *Y* where P_1 5, P_2 7, P_3 7, *Y* 11000 and Q_1 26. Estimate the effect on Q_1 of a 10% increase for each of the other goods individually.

(c) Let an isoquant for the output level Q 2144 is

$$16K^{1/4}L^{3/4}$$
 2144

Find the slope of the isoquant $\frac{dK}{dL}$.

- **7.** (*a*) If the Lagrangian function is written as
 - $Z \quad f(x, y) \quad [g(x, y) \quad C]$

rather than

 $Z \quad f(x, y) \quad [C \quad g(x, y)]$

does it make any difference to the
equilibrium value of the variables? Give
the new interpretation, if any.4

(b) Write the Lagrangian function and the first-order condition for stationary values (without solving the equations) for the following function :

$$Z \quad x_1^2 \quad 2x_1x_2 \quad x_2x_3^3$$

subject to

- (c) A firm has the production function Q K⁰⁵L⁰⁵ and buys input K at ₹ 12/unit and input L at ₹ 3/unit and has a budget of ₹ 600. Find the input combination that will maximize output. Also check the second-order condition for optimization.
- 8. (a) What is the advantage of linear programming method over Lagrange multiplier method in optimization problem? Briefly discuss.
 3
 - (b) A company produces two types of iron gates. The number of man hours required to produce each type of gate

4

4

J9**/615**

3

7

(7)

along with the maximum number of hours available are given below :

	Welding	Finishing	Admin	Selling price
Type 1 gate	6	2	1	120
Type 2 gate	2	1	1	95
Maximum hours available	840	300	250	

- *(i)* Express the information given on input requirement in terms of inequality constraints.
- (ii) Graph the inequality constraints and shade in the feasible region. 2+5=7
- (c) Given the following primal, formulate its dual :

Maximize, Z = 4x = 9y

subject to

5x 3y 307x 2y 28x, y 0

UNIT—V

- **9.** (a) Explain the meaning of a Nash equilibrium. How does it differ from an equilibrium in dominant strategies? 5
- J9**/615**

4

(b) Determine the optimal strategies for the two players A and B and find the value of the game from the following pay-off matrix :

 $Player_A$ $Player_B\begin{bmatrix} 3 & -1 & 4 & 2 \\ -1 & -3 & -7 & 0 \\ 4 & -6 & 2 & -9 \end{bmatrix}$

6

3

- (c) If player-1 has 30 strategies and player-2 has 25, how many possible outcomes of the game will these be? Briefly explain.
- 10. (a) Illustrate the concept of 'coordination' game with special reference to battle of soxes.
 - (b) A contractor says that he intends to 'low-ball the bid and make up for it on change orders'. What does he mean? Discuss.

 $\star \star \star$