2019/EVEN/03/10/ECO-404/193

2019

PG Even Semester (CBCS) Exam., May-2019

ECONOMICS

(4th Semester)

Course No. : ECOCC-404

(Advanced Econometrics-II)

Full Marks : 70 Pass Marks : 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer **five** questions, taking **one** from each Unit

Unit—I

1. (a) Outline the concepts of structural and reduced form equations using the following simple Keynesian model :

$$\begin{array}{cccc} C_t & a & bY_t & u_t \\ Y_t & C_t & I_t \end{array}$$

$$\begin{array}{cccc} 0 & b & 1 & \text{and} & a & 0 \end{array}$$

(All symbols have their usual meanings.)

(2)

- (b) "Ordinary least square (OLS) estimators are biased and inconsistent in case of a simultaneous equation model." Verify this statement on the basis of a 2-equation model and hence compute the 'simultaneous equation bias'. 6+8=14
- **2.** (a) Illustrate the identification problem of a demand-supply system with the help of Mongrel equations.
 - *(b)* Point out rank and order conditions for identification.
 - (c) Examine the identification status of the following model :

(d) Briefly present the 2SLS method of estimation under simultaneous equation models. 4+2+4+4=14

Unit—II

3. (a) You are given the following univariate time series model :

 $Y_t \quad 0 \quad 1^t \quad u_t$

With u_t u_{t-1} t, given | | 1 and t being a normal white noise error. Now express Y_t as a mixed process having a linear time trend and an AR (1) component. Is Y_t trend stationary? Explain briefly.

J9**/1727**

(Continued)

- (b) Establish the result that innovations or shocks have a diminishing effect on Y_t in case of a trend stationary process but a permanent effect on Y_t for a difference stationary process. 7+7=14
- **4.** (a) What is a unit root and under what circumstances does a univariate time series contain a unit root?
 - (b) Show that an AR (1) model is stationary while a random walk model is not.
 - (c) Outline the Dickey-Fuller (1976) test for detection of unit root with special reference to Davidson-Mackinnon (1993) critical values of the test statistic.

2+6+6=14

Unit—III

- **5.** (a) Point out the all important properties of integrated time series providing examples of each.
 - (b) Explain the terms 'cointegration', 'cointegrating equation' and 'cointegrating vector'. Elaborate the Engel-Granger method of testing for cointegration.

- **6.** (a) What is an error correction model? How is it related to cointegration? What is the relation between error correction and Granger representation theorem?
 - (b) Distinguish between structural and reduced form VAR. Hence elaborate the use of VAR in testing for Granger causality between GDP and money supply. (2+2+1)+(4+5)=14

UNIT—IV

- **7.** (a) Outline the use of LSDV model in case of cross-sectional panel data with few time points. How would you test whether the LSDV model is more suitable compared to the pooled estimator?
 - (b) In the context of fixed effects model, what are within group estimators and how are they estimated? (Assume you have a cross-sectional panel with few time points.)
 (5+2)+7=14
- (a) Outline the use of SURE method to estimate parameters of a translog production function in four inputs—capital (K), labour (L), energy (E) and material (M).
 - (b) Explain how the Wu-Hausman test may be used for model selection in panel data. 7+7=14

J9**/1727**

(Continued)

(5)

Unit—V

- **9.** (a) Bring out the interrelations between , t, F and 2 statistics.
 - (b) Show that zero covariance between two normally distributed variables implies statistical independence.
 - (c) Can you use Pearsonian product moment correlation in case of binary variables? If not, what other methods can you apply to measure correlation in such cases?
- 10. Write brief analytical notes on any two of the following : 7×2=14
 - (a) Maximum likelihood estimation (MLE)
 - (b) Testing interaction effects in ANOVA
 - (c) Test for independence of attributes

 $\star \star \star$