2018/EVEN/03/10/ECO-405/256

2018

PG Even Semester (CBCS) Exam., May-2018

ECONOMICS

(4th Semester)

Course No. : ECOCC-405

(Mathematical Economics-II)

Full Marks : 70 Pass Marks : 28

Time : 3 hours

The figures in the margin indicate full marks for the questions

Answer five questions, taking one from each Unit

Unit—I

(a) Introduce slack, surplus and artificial variables in the following system of constraints to find an initial basic feasible solution : 2×2=4

(i)
$$3x_1 \quad x_2 \quad 5$$

 $2x_1 \quad x_2 \quad 1, \ (x_1, \, x_2) \quad (0, 0)$
(ii) $3x_1 \quad 7x_2 \quad 5$
 $x_1 \quad x_2 \quad 2, \ (x_1, \, x_2) \quad (0, 0)$

(Turn Over)

(2)

(b) Write down the dual of the following LPP and express the same in standard form : 4

> Max. $2x_1 \ 6x_2$ subject to $x_1 \ 3x_2 \ 6$ $2x_1 \ 4x_2 \ 8$ $x_1 \ 3x_2 \ 6$

- (x_1, x_2) (0, 0)
- (c) Solve the following LPP using simplex algorithm :

6

Max. $60x_1 \ 50x_2$ subject to $x_1 \ 2x_2 \ 40$ $3x_1 \ 2x_2 \ 60$

 (x_1, x_2) (0,0)

2. Write down the equations of the price and output systems in a standard 2 2 2 general equilibrium model for a small open economy. Examine how FDI inflow influences sectoral outputs in this model. Use linear system of equations to validate your answer.

8J/1743

4+10=14

(Continued)

8J**/1743**

(3)

Unit—II

- **3.** (a) In the context of optimal control, explain 'control', 'state' and 'co-state variables' with economic examples. 3
 - (b) What is a Hamiltonian? What are the first-order conditions for maximizing the Hamiltonian?
 - (c) Solve the following optimal control problem :

Maximise
$$V = \begin{bmatrix} T \\ 0 \end{bmatrix} (1 = u^2)^{\frac{1}{2}} dt$$

subject to

 \dot{y} u, given y(0) A and y(T).

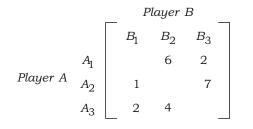
 Use optimal control to illustrate saddle point equilibrium in the Ramsey-Cass-Koopmans overlapping generations growth model with optimising households and firms.

Unit—III

- 5. (a) Elaborate Hawkins-Simon conditions in a 2 2 Leontief static open model (LSOM).
 - (b) Provide economic interpretation of Hawkins-Simon conditions. 2

- *(c)* Find analytical expression for a consumption possibility locus in the LSOM.
- **6.** (a) Introduce price system in a Leontief static closed model (LSCM) and find the conditions for a strictly positive relative price ratio. Provide economic interpretations of these conditions.
 - (b) Provide LPP interpretation of a 2 2
 Leontief static open model and derive a dual taking labour cost minimization as a primal.

Unit—IV


7. (a) For what value of , is the game with the following pay-off matrix, strictly determinable?

3

6

6

8

(Turn Over)

2

9

8J**/1743**

(Continued)

(b) Determine the optimum strategies for the two players X and Y and find the value of the game from the following pay-off matrix :

3

		Player Y					
		y_1	y_2	y_3	y_4		
	x_1	3	1	4	2		
Player X	x_2	1	3	7	0		
	<i>x</i> 3	4	6	2	9		

(c) Solve the following game using dominance principle : 4

		Player B					
		B ₁	B_2	B_3	B_4	B_5	
	A_1	3	5	4	9	6	
Player A	A_2	5	6	3	7	8	
	A_3	8	7	9	8	7	
	A_4	4	2	8	5	3	

(d) Consider the following duopoly game. Pay-offs are in rupees Lakhs. Here negative sign indicates loss and positive sign indicates profit :

	_	Cut pric	ce 5%	Make no	change
Cut p	orice 5%	(80,	60)	(60,	80)
Firm—I Make no	change	(100,	60)	(0,	0)
Use maximin decision rule to solve this					this
game.					4
8J /1743				(Tur	n Over)

- **8.** (a) Define the following :
 - (i) Game tree
 - (ii) Mixed strategy
 - (iii) Subgame perfect equilibrium
 - (iv) Backward induction method
 - (b) Consider the following game :

Microcorp's entry decision

		Enter		Stay out
Macrosoft's	Slick	380,	250	430, 0
Ad-campaign	Simple	400,	100	800, 0

Pay-offs are in rupees lakhs and a negative sign implies a loss. Now find the following : 3+3=6

- (i) Solution of this game taking Macrosoft as first mover
- (*ii*) Subgame perfect equilibrium pointing out the method of solution

Unit—V

9. (a) "Concavity of a utility function implies risk aversion." Explain. 4

```
8J/1743
```

(Continued)

 $2 \times 4 = 8$

(7)

- (b) A risk averse individual is offered a choice between a gamble that pays
 ₹ 1000 with a probability of 25% and
 ₹ 100 with a probability of 75%, or a cash payment of ₹ 325. Which one would she choose and why?
- (c) Outline the Allais paradox of choice between gambles.

6

- **10.** Write short notes on any *two* of the following : 7×2=14
 - (a) Mean-variance utility
 - (b) Two-period portfolio analysis
 - (c) Polluter pays principle

 $\star \star \star$