2018/EVEN/03/10/ECO-404/255

2018

PG Even Semester (CBCS) Exam., May-2018

ECONOMICS

(4th Semester)

Course No. : ECOCC-404

(Advanced Econometrics—II)

Full Marks : 70 Pass Marks : 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer five questions, taking one from each Unit

Unit—I

- **1.** (*a*) Indicate whether the following statements are true, false or uncertain. Provide brief explanation in each case :
 - *(i)* The OLS method is inappropriate for estimating an equation from a system of simultaneous equations.
 - *(ii)* If an equation is overidentified, ILS can be used to estimate the structural parameters.

8J**/1742**

(Turn Over)

(2)

(b) The structure of a model with three endogenous and three exogenous variables is given below (1 indicates presence and 0 indicates absence of the variable in the equation) :

1	0	1	1	1	0	
0	1	1	0	0	1	
1	1	1	0	0	1	
Which	of	the	three		equations	is
identifie				(3+3)+(4+4)=14		

- **2.** (a) What is meant by identification? Explain why identification problem arises in a simultaneous equation system.
 - (b) Consider the following model :

 y_{1t} $12 y_{2t} 11 x_{1t} 12 x_{2t} u_{1t}$ $21 y_{1t} \quad 23 x_{3t} \quad u_{2t}$ y_{2t} The following data are given to you : 10 0 0 $(X \ X)$ 0 5 0 0 0 10 10 20 X Y10 10 30 20 Find out the ILS estimators of the parameters of the exactly identified equation in the model. 4+10=14

(Continued)

(3)

Unit—II

3. (*a*) Find the autocorrelation function (ACF) for the AR(1) model given by

 $X_t \quad m \quad X_{t-1} \quad t, | \mid 1$

and hence plot the ACF for 0 70.

- (b) Verify whether the first difference of Y_t for the model Y_t t u_t is a weakly stationary stochastic process. Here u_t is a white random noise.
- (c) Verify whether the random walk (RW) model Y_t m Y_{t-1} t (t is a white noise) implies that Y_t is non-stationary. Hence also verify whether the first difference is stationary.
- (d) Point out the all important properties of integrated time series. 4+3+4+3=14
- **4.** (a) What is 'Granger causality'? Explain.
 - (b) Outline Granger causality under a structural VAR setup as developed by Toda-Yamamoto (1995).
 4+10=14

Unit—III

5. (a) Outline the Box-Jenkins methodology of model selection for a univariate time series. How would you use the Ljung-Box and Box-Pierce statistics under this procedure?

(b) Outline the Granger-Newbold concept of spurious regression. Explain the steps for detection of spurious regression.

9+5=14

- **6.** (a) Present a stepwise procedure of testing for cointegration under Engel-Granger method.
 - (b) What is 'Granger representation theorem'? How is it involved in Engle-Granger test for cointegration? 9+5=14

UNIT—IV

- **7.** (*a*) Define panel data. Discuss the usefulness of panel data.
 - (b) Discuss the random effects model of panel data regression with suitable examples. How does it differ from random coefficients model?
 - (c) Write a brief note on fixed the effects model. (2+3)+6+3=14
- **8.** (a) Consider the following model :

 y_{it} i x_{it} u_{it} i 1, ..., N and t 1, ..., TShow that in this case O_{LS} and L_{SDV} can be obtained as special cases of GLS.

8J**/1742**

(Continued)

(5)

(b) Write short notes on the following :

- (i) SUR model
- (ii) Hausman test $8+(3\times 2)=14$

Unit—V

- **9.** (a) What do you mean by multivariate analysis?
 - *(b)* Briefly discuss different types of multivariate technique.
 - (c) Write the p.d.f. and properties of multivariate normal distribution. 3+5+6=14
- **10.** (*a*) Write a short note on canonical correlations.
 - (b) Suppose our problem is to study non-vegetarian food consumption by considering only two food items—meat and fish. The correlation matrix is given as under :

Here p_1 price of meat, p_2 price of fish, x_1 meat consumption and x_2 fish consumption. Obtain price and consumption indices. 5+9=14

$\star \star \star$