2018/EVEN/03/10/ECO-205/251

2018

PG Even Semester (CBCS) Exam., May-2018

ECONOMICS

(2nd Semester)

Course No. : ECOCC-205

(Basic Econometrics)

 $\frac{Full Marks: 70}{Pass Marks: 28}$

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer five questions, taking one from each Unit

Unit—I

- **1.** (*a*) State the normality assumption of a two-variable linear regression model.
 - (b) Define standard error of regression. Show that $cov(\hat{,)} = \overline{X}var(\hat{)}$ in case of a two-variable linear regression model.

8J**/1738**

(Turn Over)

(2)

(c) For a two-variable linear regression model, show that

$$\frac{ESS}{TSS} \quad 1 \quad \frac{RSS}{TSS}$$

(d) An estimated regression equation is given as follows :

 \hat{Y}_i 0 0144 0 7241 X_i SE() 0 0695

where

 X_i level of education

 Y_i average hourly earnings

Calculate the values of F and r^2 . 2+(2+2)+4+4=14

- **2.** (a) State the reason for inserting random disturbance term in a classical linear regression model.
 - (b) Let X denotes labour-hours of work and Y denotes output. Now on the basis of the following information :

- *(i)* Estimate marginal productivity of labour and interpret the result.
- (*ii*) Test the null hypothesis that H_0 : 0 at 5% level of significance.

8J**/1738**

(Continued)

(3)

(c) Calculate the value of r^2 and state about the goodness of fit of the estimated model. 4+(3+4)+3=14

Unit—II

- **3.** (a) Obtain the OLS estimators of a three-variable linear regression model.
 - (b) Are the following two models comparable on the basis of the value of R^2 ?

where n = 100 for both the models.

(c) Show that

$$\overline{R}^2$$
 1 (1 R^2) $\frac{n}{n}$ 1

for a three-variable linear regression model. Why is \overline{R}^2 considered as a better measure of goodness of fit as compared to R^2 ? 8+2+(2+2)=14

4. (*a*) Discuss the ANOVA approach for testing the overall significance of a three-variable linear regression model.

(b) A researcher has obtained the following results by regressing Child Mortality Rate (CMR) on per capita GNP and the Female Literacy Rate (FLR) for a sample of 10 countries :

 \widehat{CMR}_i 263 64 0 0056 $PGNP_i$ 2 234 FLR_i $SE(\hat{1})$ 11 59 $SE(\hat{2})$ 0 0019 $SE(\hat{3})$ 0 2099 R^2 0 7077 \overline{R}^2 0 6981 Based on these information—

- *(i)* interpret the estimated slope coefficients;
- (*ii*) test the null hypothesis that $H_0: {}_2 {}_3 {}_0;$
- at 5% level of significance.

Given that $F_{0\ 05}(2, 7)$ 4 74. 8+(2+4)=14

UNIT—III

- **5.** Indicate whether the following statements are true (T), false (F) or uncertain (U) and give a brief explanation for each : 4+5+5=14
 - (a) Multicolinearity makes the standard errors of estimated coefficients small.

8J**/1738**

(Continued)

- (b) The OLS estimators become biased and inefficient when there is autocorrelation.
- (c) Heteroscedasticity in the error leads to biased estimates of the regression coefficients.
- **6.** (a) Describe the steps involved in the Goldfeld-Quandt test for detecting heteroscedasticity. What are the limitations of this test?
 - (b) What are the sources of autocorrelation problem?
 - (c) Suppose you obtained the following results from a multiple regression :
 - $\hat{Y}_t \quad 5 \quad 2 \quad 0 \quad 45 \quad X_t \quad 0 \quad 78 \quad Y_{t-1} \\ SE : (0 \quad 6) \quad (0 \quad 04) \quad (0 \quad 05) \\ R^2 \quad 0 \quad 99 \quad DW \quad 1 \quad 98$

Are you fully satisfied with the results where R^2 is exceptionally high and the value of Durbin-Watson *d*-statistic is very close to 2? If not, why? 6+3+5=14

UNIT—IV

- **7.** (a) What is meant by the spurious regression problem? When does such problem arise?
 - (b) Distinguish between difference stationary and trend stationary.
 - (c) Write a short note on Dickey-Fuller test. 4+4+6=14
- **8.** Indicate whether the following statements are true (T), false (F) or uncertain (U) and give a brief explanation for each : 6+5+3=14
 - (a) The mean of the random walk series without drift changes over time.
 - (b) Non-stationarity of a series may arise due to structural break in the series.
 - (c) The trend in a non-stationary series is constant.

UNIT-V

- **9.** (a) Define the following :
 - (i) Structural coefficients
 - (ii) Reduced-form coefficients
 - (iii) Simultaneous equations bias

8J**/1738**

8J**/1738**

(Continued)

(7)

- (b) Consider the following structural model :

where *Y*'s are endogenous variables and *X*'s are predetermined variables. Determine the identification status of the equations. (2+2+2)+8=14

- **10.** Indicate whether the following statements are true (T), false (F) or uncertain (U) and give a brief explanation for each : 5+4+5=14
 - (a) We can apply OLS to estimate an equation that belongs to a simultaneous equations system.
 - (b) In simultaneous equations system, the greater the number of exogeneous variables the better.
 - (c) Identification problem only arises in a simultaneous equations system.

 $\star \star \star$

8J—100/1738 2018/EVEN/03/10/ECO-205/251