2018/EVEN/08/22/CHM-202/180

2018

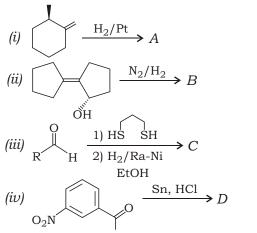
PG Even Semester (CBCS) Exam., May-2018

CHEMISTRY

(2nd Semester)

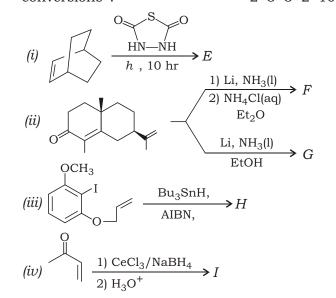
Course No. : CHMCC-202

(Organic Chemistry—II)

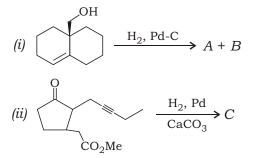

Full Marks : 70 Pass Marks : 28

Time : 3 hours The figures in the margin indicate full marks for the questions

Answer **five** questions, taking **one** from each Unit



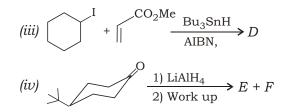
1. (a) Suggest the products of the following reactions : 1×4=4

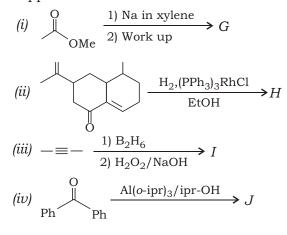


 (b) Write the products and suggest plausible mechanism for the following conversions : 2+3+3+2=10

(2)

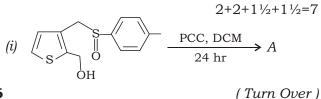
2. (a) Complete the following reactions (depict the stereochemistry of the products) : 1×4=4

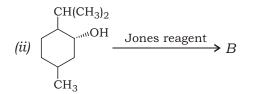


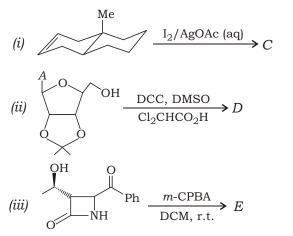

(Turn Over)

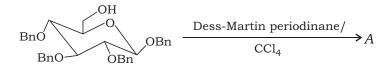
8J**/1676**

(3)



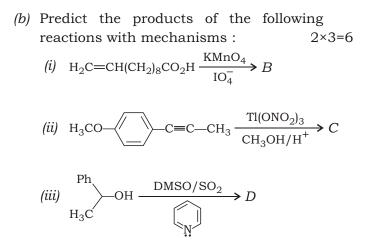

(b) Identify the following products and provide supportive mechanisms : 2+3+2+3=10


3. (a) What are Jones reagent and Collins reagent? Describe briefly the preparative methods of Jones reagent and Collins reagent. Predict the major products of the following reactions with mechanisms :

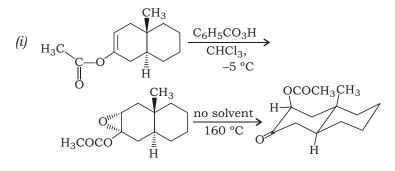


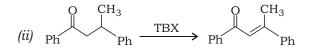
(b) Predict the products for the following reactions with plausible mechanisms :

21/2+21/2+2=7



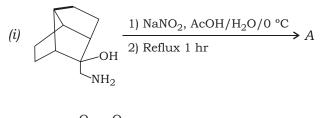
 (a) What is Dess-Martin periodinane and how can it be prepared from 2-iodobenzoic acid? Predict the products of the following reactions with mechanistic pathway : 2+2=4

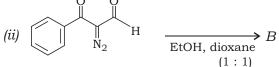


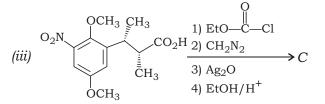


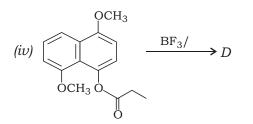
(5)

(c) Provide mechanism for the following reactions : 2×2=4

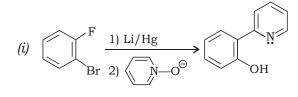


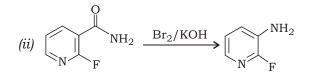



(6)


UNIT—III

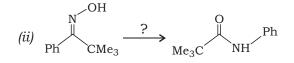
(a) Predict the products of the following reactions and provide plausible mechanisms: 2¹/₂×4=10

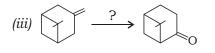




8J**/1676**

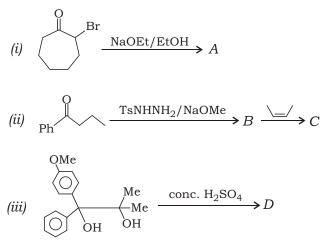
8J**/1676**


(b) Provide mechanisms to justify the formation of the following products : $2 \times 2=4$



6. (a) Carry out the following transformations with appropriate reagent(s), reaction conditions and provide mechanisms :

 $2^{\frac{1}{2}\times3=7\frac{1}{2}}$



(8)

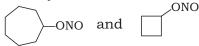
(b) Predict the products of the following reactions along with mechanisms :

2+21/2+2=61/2

(a) Explain the following observations.
Provide the outcomes along with mechanistic support : 2×3=6

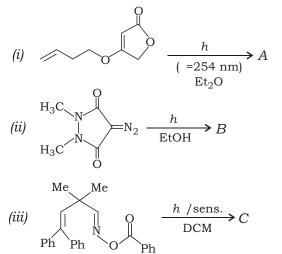
(i) Individually

$$\begin{array}{c} Cl \\ Cl \end{array} \quad and \quad \left(\begin{array}{c} CO_2 Et \\ CO_2 Et \end{array} \right)$$

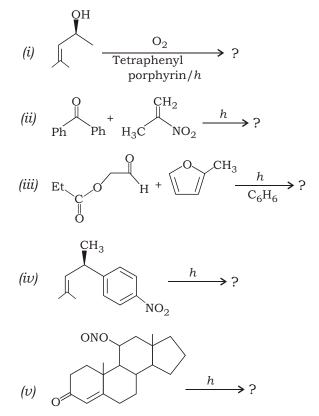

undergoes different types of photochemical reactions with acetone under non-sensitized conditions.

8J**/1676**

(Turn Over)


8J**/1676**

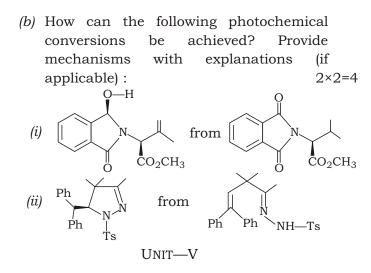
- (ii) Individually CH_3 H_3C CH_3 H_3C CH_3 H_3C CH_3 H_3C CH_3 Ph Ph
 - both undergo different types of photochemical transformations.
- (iii) Individually

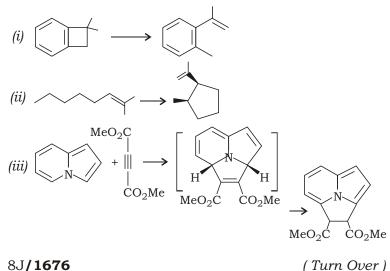

produces two different products upon irradiation with light.

(b) Delineate the outcomes of the following photochemical processes with the aid of correct mechanisms : 2×3=6

(10)

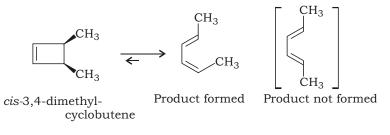
- (c) How can singlet oxygen be generated?Explain with an example. (Use spin states in support of your answer.)
- (a) Delineate the photochemical outcomes of the reactions with befitting mechanism on each. Provide the exact stereo-chemistry where applicable : 2×5=10



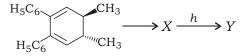

(Continued)

2

(11)



9. (a) Each of the following reactions involves at least one pericyclic process. Provide mechanisms for the reactions. Identify the pericyclic process or processes : $(2+1) \times 3=9$



(12)

- (b) What is 1,3-dipolar cycloaddition?
- With FMO analysis, show that Nazarov (c)cyclization is a thermally allowed process (with mechanism). 3
- **10.** (a) Draw the -molecular orbitals of 1,3,5-hexatriene. How many nodes are present in $_4$? 2
 - With correlation diagram treatment, (b) explain the stereospecificity in the following reactions :

With reasoning identify X and Y in the (c)following reaction sequence. Label each $1+1+1+\frac{1}{2}+\frac{1}{2}=4$ process :

8J /	1676
-------------	------

(Continued)

2

4

8J/1676

(13)

(d) Draw the product formed when the following compound undergoes disrotatory cyclization. Indicate the stereochemistry (R/S) at the new sp^3 -hybridized carbons. Will the reaction occur under thermal or photochemical conditions? 1+1+1=3

(e) What is a cheleotropic reaction? 1

 $\star\star\star$