Chapter Three

MODELS METHODOLOGY
AND DATA

This chapter deals with the methodology adopted for the present study. The analytical

foundations of measurement of economic efficiency, formulation of the stochastic
production frontier and sampling design and collection of primary data are expressed
in detail. The analytical microeconomic foundations of measurement of technical
efficiency are explained in the first sub-section, that is, section 3.1. Concepts of
production frontier, input and output based measures of technical efficiency are
elaborated in this section using standard microeconomic tools. Some elementary real
analysis is used in line with graduate level standard microeconomic texts. The second
subsection, that is, section 3.2 is dedicated to the concept of the stochastic production
frontier and its conceptual development since its inception. The next three sections
3.3. 3.4. and 3.5 are devoted respectively to the basic stochastic production frontier
model of Aigner et al.,, (1977) and the specific econometric strategy adopted in the
present study. All variables selected and constructed are first defined. Next, the
rationale behind each variable construction, i.e., the measurement methods for each
variable selected for stochastic frontier analysis is elaborated in section 3.6. Finally
the sample selection and data collection methodologies are narrated. Data for the

present research is entirely primary in nature. The details of how the sample offishing
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teams was selected from the study area are described in section 3.7. The details of

interview with the catchers for data collection are finally described.
3.1 Analytical Foundations of Measurement of Economic Efficiency

Prior to describing the econometric strategy adopted to measure firm level economic
efficiency or inefficiency it is essential to present the conceptual (microeconomic)
framework of economic efficiency. We begin with the physical structure of different

production technologies with the help of graphical analysis. A production technology

that transferring inputs X=(X,,%,,....., Xy )€R) ={x:xeR" x>0} into output

V=Y 1,Yysee Vir) €R+N can be represented by the output correspondence L or the

graph of the technology GR. The output correspondence P:

RY 2k [2R1V ={A:AcR"}] (4 is a subset of the Euclidian space of dimension
M) maps input X ER+N into subset P (X)QRiV of output. The set P(x) is called
output set and it denotes the collection of all output vectors yeRi” that are
obtainable from the input vector XERiV (Neogi, 2005). The input correspondence

L:RY 2R maps the output yeRi” into subset L(y)C R+N of inputs.
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The input set L(y) denotes the collection of all input vectors XER+N that yields at

least output VectoryERy . The input and output correspondence can be derived

from one another by means of the relationships L(y)={x:yeP(x)} and

P(x)={y:xel(y)}-

Now the graph of the production technology is the collection of all feasible input-

output vectors, 1.e.
GR={(x,y)eR"": ye P(x),xeR) } and

GR={(x,y)eR"™" : xeL(y),yeR" } .

Thus the input-output correspondence can be derived from the graphs above (figure

32.1and3.22)as, P(x)={y:(x,y) eGR} and

L(y)={x:(x,y) eGR}.

Figure 3.2.3 models both inputs and output substitution in addition to modeling input-
output transformation. The input set, the output set and the graph represents the

technology in terms of input quantities and output quantities.

Let us introduce the concept of production frontier as a functional characteristic of the
boundary of the graph of the production technology. The boundary of the graph
represents the maximum possible output obtained from a given level of input or
minimum input use for a given level of output. In a single output-multiple input case

the production frontier can be defined as
J(x) =max {y:yeP(x)

=max {y:xeL(y)}
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In figure 3.2.4 the production function f{x) describes the maximum output that can be
obtained with any given input vector. The different combinations of inputs and
outputs fall on or below the production frontier. The basic idea of efficiency is to
measure the distance of a particular combination of input and output of a production

unit from the respective production frontier (Neogi, 2005).
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There are two concepts of a distance function. The input distance function measures
the maximum possible conservation of input to reach the boundary of production

frontier. The concept can be illustrated in Figure 3.2.5 [(a) and (b)].
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An input distance function can be defined as D, (y,x)=max {1:x/A€L(y)} where A

is the contraction factor by which inputs can be reduced to produce output y. Figure

3.2.5 is the graphical representation of the input distance function.

98



An output distance function can be defined as DO (y,x):min {,U :y/ uepP (x)}where
M 1s the output expanding factor i.e., the proportion in which output can be
maximized (with £ < 1) with a given level of input. A graphical representation of the

output distance function is given in figure 3.2.6 [(a) and (b)].
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Efficiency measurement is based on the estimates of the best practice frontier
production function which is a natural reference or basis of efficiency measure.

Efficiency may be of three types: (i) technical, (i1) economic and (iii) scale.

Efficiency measure provides a description of the structure of an industry and is hence
a very important step for identifying the causes of inefficiencies. Figure 3.2.7 (a)
describes the concept of feasible production set which is the set of all input-output
combinations which are feasible. The set consists of all points between the production
frontier and the X- axis. The points along the production frontier line OP define the
efficient subset of the feasible production set. If the firm operating at point A moves
to point B, the firm can achieve output augmenting efficiency. Similarly if the firm
moves from point A to point C, it will be technically efficient from the input saving

perspective (measure). Point D in figure 3.2.7 (a) gives the technically optimal scale
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where output per unit of input is maximized. Figure 3.2.7 (b) represents the

corresponding points of figure 3.2.7 (a) in an isoquant frame.

Now the output based measure of technical efficiency £ is computed by comparing
an observed point of input requirement to produce output Y, with the mput
requirement on the frontier production function corresponding to that level of output.
In the input coefficient space this means comparing an observed input coefficient
point with the point on the transformed isoquant of the frontier function

corresponding to the observed output with observed factor proportions.

In figure 3.2.7 (b) this can be stated as E, :% . Another measure E; is obtained by

comparing an observed point of input requirements for an observed output Y, with the
output Y}, obtained on the frontier production function at the same level of input. In

3.2.7 (b) this can be represented by the ratio £, :% )
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We now define the efficiencies in terms of distance functions. We consider the case

of multiple inputs and single output. The input oriented measure of technical

efficiency is given by the function TE,(y,x)=min{A:y<f(Ax)} and the output

oriented technical efficiency is measured as T Eo (y,x) =max {,u: yu < f (i X)} . Now

the mput oriented technical efficiency can be described as a measure of maximum
radial contraction in X that enables to produce Y and A < 1. Output oriented technical

efficiency is the maximum radial expansion in Y for a given set of input X.

We must now introduce costs and input prices in measuring firm level efficiency.
When input prices are introduced in explaining production technology it will be
possible to measure the efficiency of units in terms of costs and allocation of inputs.
A cost frontier is defined as the locus of minimum possible costs to produce a given

level of output. A cost function 1s defined as C (y,w) =min{W: x eL(y)}, where

/4 zzw, X, ; w; 1s the price of inputs.

The measure of cost efficiency is defined as CE(y, x,w)= C(y,w)/W . In other

words it is the ratio of minimum possible costs to actual costs. In other words it is the
ratio of minimum possible costs to actual costs (Neogi, 2005).
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Let 4 be a set of inputs required to produce a given level of output as indicated by the
isoquant / /. At point A the firm is neither technically efficient nor cost efficient. If
the firm can move down to a point along the ray through the origin where it cuts the

iso-cost line, the intersecting point will be cost efficient.

We define cost efficiency CE as the ratio of minimum costs of production with given

mput prices to observed cost. From figure 3.2.8 we can write CE :%. However

all cost efficient points may not lie on the isoquant. That is, all cost efficient points
are not technically efficient. For example, input combination at C in figure 3.2.8is
cost efficient but not technically efficient. On the other hand point B is technically
efficient but not cost efficient. Allocative efficient point is a point which gives both
technical and cost efficient combination of inputs. Point D in figure 3.2.8 is a point
where the firm is technically efficient as well as cost efficient. Hence the point where
allocative efficiency is attained must be a point of tangency between the iso-cost line
and the isoquant. The measure of allocative efficiency 1s defined as

AE(y, x,w) = CE (y,x,w)/ T E(y,x)

The measure of input allocative efficiency is given by the ratio of cost efficiency to

input oriented technical efficiency.

3.2 Formulation of the Stochastic Production Frontier

To begin with we assume that cross-sectional data on the quantities of m inputs used
to produce a single output are available for each of N firms or producers in an

industry. A production frontier model can be written as

v, =f(x;;p).TE,, (3.2.1)
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Where J, is the scalar of output of the i firm, i = 1, 2... N, x; is a vector of m inputs
used by firm i, f(x;;p) is the production frontier, and g is a vector of technology

parameters to be estimated. IE, is the output oriented measure of technical

efficiency of firm i. From the definition of technical efficiency developed in section

4.1, we can write

g - i (3.2.2)

TE, ;
S B)
which defines technical efficiency as the ratio of observed output to maximum
feasible output? J; achieves its maximum feasible value of S (x;;B)if and only if
TE.=1. Otherwise TE; <1 provides a measure of the shortfall of observed output

from maximum feasible output. In equation (3.2.1) the production frontier S B)
1s a deterministic frontier. Consequently, in equation (3.2.2) the entire shortfall of
observed output ); from maximum feasible output S (x;58) is attributed to technical

inefficiency. Such a formulation disregards the fact that output can be affected by
random shocks that are beyond the control of firms. To incorporate firm specific
random shocks into the analysis requires the specification of a stochastic production

frontier. To do so we rewrite equation (3.2.1) as
yi=f(x;;8). expiv, }.TE,, (3.2.3)

where f (X,-; ﬂ) exXp {V,-} is the stochastic production frontier. The stochastic

production frontier consists of two parts: a deterministic part S (x;; ) common to all
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producers and a producer specific part €Xp{V;} which captures the effect of random

shocks on each producer. Hence in case of a stochastic production frontier equation

(3.2.2) becomes

1E, = Ji )
S (x;;B).expiv,}

(3.2.4)

which defines technical efficiency as the ratio of observed output to maximum

feasible output in an environment characterized by eXp{Vl-} . Now Y, achieves its
maximum possible value of f (xl, ; ﬂ) €xXp {Vi} if and only if TE i = 1. Otherwise
TE, < 1 provides a measure of the shortfall of observed output from maximum

feasible output in an environment characterized by €Xp {v,}, which is allowed to vary

across producers.  Technical efficiency may be estimated using either the
deterministic production frontier or the stochastic production frontier models as given
in equations (3.2.1) and (3.2.3). In this study we prefer to use the stochastic
production frontier model because the deterministic frontier ignores the effect of
random shocks on the production process. The deterministic frontier runs the risk of
improperly attributing unmodeled environmental variation to variation in technical

efficiency (Kumbhakar, 2000).
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3.3 The Basic Cross-Sectional Model and Method of Estimation

Aigner, Lovell and Schmidt (ALS) (1977) and Meeusen and van den Broeck (MB)
(1977) simultaneously introduced the stochastic production frontier models. These
models allow for technical inefficiency and also acknowledge the fact that random
shocks outside the control of producers can affect output. The biggest advantage of
the stochastic production is that the impact on output of shocks due to variation in
labor and machinery performance, vagaries of the weather, and plain luck can in

principle be separated from the contribution of variation in technical efficiency.

We assume that f(;;/) takes the log-linear Cobb-Douglas form so that the

stochastic production frontier can be written as

Iny,=B,+> B, Inx, +v,—u,, (3.3.1)
J

where v; is a two sided random statistical noise component and u; is a non-negative (u;
> 0) technical inefficiency component of the error term. Since the error term in
(3.3.1) has two components, the stochastic frontier model is often referred to as a
composed error model. The noise component v; is assumed to be independently and

identically distributed (iid), is symmetric and is distributed independently of the one
sided technical inefficiency component #;. Thus the error term in (3.3.1) &, =V, —U;is
asymmetric since #; > 0. Assuming that v; and u; are distributed independently of x;,

estimation of (3.3.1) by OLS provides consistent estimates of [ 78, but not of B, since

E(g,)==E(u;) <0 . Moreover OLS does not provide producer specific technical

efficiency.
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However OLS provides a simple test for the presence of technical inefficiency in the

given data. If u; = 0, then&; =V, the error term is symmetric and the data do not

support the presence of technical inefficiency. However if u> 0, then &, =V, —U;is

negatively skewed and there is evidence of technical inefficiency in the data. This
implies that a test of the presence of inefficiency in the data can be directly based on

the OLS residuals. Schmidt and Lin (1984) proposed the test statistic

m :
b* = > where M,and My are the second and third sample moments of the

(m2)3/2 4
OLS residuals. Since v; is symmetrically distributed, ;is the third sample moment
of u;. Thus M;< 0 implies that the OLS residuals are negatively skewed and it

suggests the presence of technical inefficiency. ;> 0 implies that the OLS residuals

are positively skewed which 1s meaningless in this context. Hence positive skewness

of OLS residuals indicates that the model is misspecified. Since the distribution of

bll/z is not extensively published, Coelli (1995) proposed an alternative test statistic

that is asymptotically distributed as N (0,1). Negative skewness of OLS residuals

occurs when M;< 0, a test of hypothesis that ;> 0 is appropriate. Under the null

hypothesis of zero skewness of errors in equation (3.3.1), the test statistic

m
————77 1s asymptotically distributed as N'(0,1). The advantage of this test is that
(6m;/N)

it is based on OLS residuals. The disadvantage is that it is based on asymptotic theory
and especially in large scale manufacturing number of firms is small in a cross

section. We shall consider hypothesis tests of the absence of technical inefficiency

based on maximum likelihood estimators.
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In order to estimate the model in (3.3.1) Aigner et al, (1977) made specific

distributional assumptions regarding the individual components of the composed error

term £; . In particular the following assumptions are made.

() v, ~iidN(0,0°)

(i) u, ~iidN"(0,0.), that s u, is non-negative and distributed as half normal,
(i11) v;and u; are distributed independently of each other and of the regressors.
Assumption (i) is conventional and is maintained throughout our analysis.
Assumption (i1) is based on the proposition that the modal value of the technical
inefficiency term is zero. It is over simplistic and the distribution of the sum of v and
u, under the distributional assumptions in (1) and (1) are easy to derive. The second
part of assumption (iii) is a bit problematic as because if producers know something
about their technical efficiency it can influence their choice of inputs. The density

functions of v and u respectively are:

1 v
- - 332
S ) \/ﬂav'exp{ 203} (33.2)
and f(u):\/E%(7 .exp{— 2u02} (3.3.3)

with u; > 0, i.e. it is non-negative half normal. Given the independence
assumption, the joint density function of v and u is the product of their individual

density functions and hence

2 2
LR —— .exp{— . } (3.3.4)
270, o,
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Since &; =V; —U;, the joint density functions of # and & 1is

2

f(u,e):—z—.exp{—u—z—ﬂ} (3.3.5)
270, o,

20 20

u

The marginal density function of & is obtained by integrating u out of f(u, &),

which gives

S (€)= [fu,e)du

el At
2o o 20 (3.3.6)

1/2

where 0=(0. +0.)"?,A=0,/0,and¢() and D () are the standard normal density

and cumulative distribution functions respectively. The reparameterization from o,
2 . . . e
and O, to 0 and A is convenient as because A provides an indication of the

: o . . 2 2
relative contribution of u and v in& . As A —0 eithero, =+ or 6, =0, and the
symmetric error component dominates over the one sided error component in the

determination of & . As A —oo either 0'3 —>+00 or O'f —0 and the one sided error

component dominated over the symmetric error component in determination of € . In

the first case we have the OLS production function model with no technical
inefficiency, whereas in the second case we are back to a deterministic production

frontier model with no noise.
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The Aigner et al. (1977) stochastic production frontier model with normal-half normal
composed error distribution contains basically two parameters, 0, and 0, or else
o and A . The distribution parametersO and A are to be estimated along with the
technological parameters g . But before that we must test the hypothesis that 2 =0,
where the test is based on the maximum likelihood estimate of 2 . A likelihood ratio
test may be conducted to test the hypothesis that 4 =0 but since the hypothesized
value of A lies on the boundary of the parameter space, it is difficult to interpret the

test statistic. However Coelli (1995) has shown that in this case the appropriate one

sided likelihood ratio test statistic is asymptotically distributed as a mixture of ¥ .

distributions rather than as a single ¥~ distribution. The critical values of such a test

are obtained in table Kodde and Palm (1986, table 8.1). If the null hypothesis is true
then the production function is equivalent to the traditional OLS average production

function where firms are assumed to be fully technically efficient.

The marginal density function f (g)is asymmetrically distributed with mean and

/ 2 _
variance E(¢)=—FE(u)=-o0,,/— and V(g):”_z'ajjuaj. ALS suggested [1 —
7 z

E(u)] as an estimator of mean technical efficiency. But Lee and Tyler (1978)

proposed

2

E(exp{—u}):2[1—c1>(au)].exp{‘72“ } (3.3.7)

which is preferred to [1 — £ (u)] since [1 — u] includes only the first term in the power
series expansion of exp {-u}. Also unlike [1 — E(u)], E(exp{-u}) is consistent with

the definition of technical efficiency developed in (3.2.4).
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Using the marginal density function f (&) from (3.3.6) the log likelthood function for

a sample of N firms in an industry is

lan(constant)—Nlna+21n®(—ﬁj—21 =Y & (3.3.8)
i o o

The log likelihood function in equation (3.3.8) can be maximized with respect to the
parameters to obtain maximum likelihood estimates of all parameters of the model.

These estimates are consistent as N —>+ oo .

Battese and Corra (1977) parameterization is more convenient from the estimation

point of view. Letting 7=O‘5 /0 we see that »<[0,1]. The log likelihood function

with this reparameterisation is

1nL:_§(1n27z+1naz)+Zlnc1>¢z,.}212z,sf (3.3.9)
] (o}

Where Zi:fL v
o |\1-y

The next step is to estimate technical efficiency of each producer. We have estimates

of&; =V, —U; , which contain information on u;. The task is to extract the information
that €; contains on u;. A solution to the problem is obtained from the conditional
distribution of u; given &€; , which contains whatever information €; has concerning ;.

Jondrow, Lovell, Materov and Schmidt (1982) showed that if #; ~ N™ (0 o), the

> u

conditional distribution of u# given €; is
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flule)=
/(&)
(u—p.)’
—_— 3.3.10
o exp{ o (33.10)
.
where ,u*=—80'j/ o’ and O'fzof()'f/ o’ . Since f(u/g) 1s distributed as

2 . e .
N* (i.,0+), either the mean or the mode of this distribution can serve as point

estimator of u. The mean is given by

1., /0.
E(ui/g,.)=/u*i+o_*[ ¢(—., /o }

1-® (., /o)
o #(g, 1/ o) _(Siﬂ,)
- o) o

Once point estimates of u; are obtained, estimates of firm specific technical efficiency

(3.3.11)

can be computed from
TE, =exp{-u.} (33.12)

where ﬁl- is E(u;/€;). Battese and Coelli (1988) proposed the alternative point

estimator for IE; as,

TE; = E(exp{-u;}/¢;) =

1-D (-, /o) 2

1-®(o. — .,/ 0.) 1,

The point estimators in (3.3.12) and (3.3.13) can give different results since the two
formulae are unidentical. We use the later in the present study. But it is to be noted
that regardless of which estimator is used the estimates of technical efficiency are
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inconsistent simply because the variation associated with the distribution of (u, /e ) is

independent of i. However this is the best estimation strategy with cross sectional

data.

3.4 The Normal-Truncated Normal Model

The normal-half normal model may be generalized by allowing u to follow a
truncated normal distribution. This model was introduced by Stevenson (1980). The

distributional assumption on v remains the same. Only the assumption on u is changed

as U; ~idN" (i, 0'3)_ The third assumption of the ALS model is also maintained.

The truncated normal distribution assumed for u generalizes the one parameter half
normal distribution by allowing the normal distribution which is truncated below at
zero to have a non-zero mode. Thus this model contains an additional parameter £ to
be estimated and hence provides a somewhat more flexible representation of the

pattern of inefficiency in the data. The truncated normal density function for u > 0 is

: 1 (u—p)*
b - A S n? 34.1
ey W \/ﬁoacb(—ma)'exp{ 207 } G40

Here ¢ is the mode of the normal distribution which is truncated below at zero. If
=0, then the density function collapses to the half normal density function. £ may be

of either sign. The estimation strategy is the same as in ALS model but with minor
changes in the parameterization. The log likelihood function for a sample of N firms

1S
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InL= (constant)— Nlno —Nln@(—ﬁj

O-u
g (3.4.2)
uoogA] 1 g +u
+Y In@| L 22N L
Z [o% aj 22( o j
where o, =Ac/\1+2> , o=(c.+0.)?andi=c,/c, . This log likelihood

function can be maximized to obtain maximum likelihood estimators of all parameters
in the model. It can be shown that the conditional distribution f (u/¢)1s distributed
as N*(I,,0.) where Ji,=(~0. & +p0.)/0” and 0. =0 0. /0”. Thus either the
mean or the mode of £ (u/&) may be used to estimate the technical efficiency of each

firm. The mean of the conditional distribution of u is given by

E(u,/g) =0, |:ﬁi + M} (3.4.3)
o. 1-®(u,/o.)

Point estimates of technical efficiency of each firm can be obtained by means of

TE, =E(exp{—u,}/¢,) :{lzipéi*_ja(%io/_o)-*):l.exp{—ﬁA +;.0'*2} (3.4.4)

This produces unbiased but inconsistent estimates of technical efficiency (Kumbhakar

and Lovell, 2000).
3.5 The Econometric Approach for the Present Study

In order to measure technical efficiency at the fishing team level along with its non-
input determinants, the present study adopts a Cobb-Douglas stochastic frontier model
with inefficiency effects following Battese and Coelli (1995). In other words the

stochastic production frontier and the inefficiency effects parameters are
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simultaneously estimated, given appropriate distributional assumptions. This was
originally proposed by Kumbhakar er al, (1991), Reifschneider and Stevenson
(1991), and Haung and Lui (1994). Battese and Coelli (1995) is an improvement over
the previous methods as it is based on panel data. Moreover this one-stage maximum
likelihood approach is statistically consistent with the Kumbhakar er al., (1991)
approach and leads to more efficient inference with respect to the parameters (Coelli
and Battese, 1996). The approach has been applied empirically by, Coelli and Battese

(1996), Battese and Broca (1997).

Acceptably, a Cobb-Douglas form restricts the flexibility of the fish catch technology
by imposing the elasticity of scale to be constant and the elasticity of input
substitution to be unity. The trans-log production function often creates practical
problems in estimation. First with several inputs there is an obvious loss of degrees of
freedom (incorporation of log of inputs, square of log of inputs and cross product of
log of inputs). Second there is the obvious econometric risk of muticollinearity
among the various explanatory variable columns. Although its parameters may be
estimated by Seemingly Unrelated Regression Equations (SURE) method, it is
ineffective in estimating the stochastic production frontier parameters which requires

direct estimation of the production frontier.

The stochastic production frontier developed separately by Aigner, Lovell and
Schmidt (1977) and Meeusen and van den Broeck (1977) decomposes the error term
of the usual econometric production function model into a white random noise
component and a one sided inefficiency random component. For the present, we
assume a cross-sectional stochastic production frontier model (specified in

Kumbhakar et al, 1991) as
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Iny, =In f(x; f)+v, —u, (3.5.1)
u =y'z+e (3.5.2)

The random noise component in the production process is introduced through the
error component V; which is iid N (O,O'v2 ) in equation (3.5.1). The second error

component which captures the effects of technical inefficiency has a systematic
component Y 'Z,- associated with the firm specific variables and exogenous variables

along with a random component &; . Inserting equation (3.5.2) in (3.5.1) gives the

single stage production frontier model
Iny, =Inf(x;B)+v, = (rz +¢,) (3.5.3)

The condition that u; > 0 requires that & 2—) 'Z,- which does not require 7’21‘ >0 for
each producer. It is now necessary to impose distributional assumptions on v; and &;

and to impose the restriction &, 2—} 'Z,- in order to derive the likelihood function.

Kumbhakar et al (1991) imposed distributional assumptions on v; and u; and ignored
¢ They assumed that #,~ N (/'z,,0. ) ie., the one-sided technical inefficiency
error component has truncated normal structure with variable mode depending on z;.
It is still not necessary that 7'2,» >0, Ifz;=1 and Yy =Yz = Q/Q:O, this model
collapses to Stevenson’s (1980) truncated normal stochastic frontier model with
constant mode /; , which further collapses to the Aigner, Lovell and Schmidt (1977)

half normal stochastic frontier model with zero mode if }’1:0. Each of these

restrictions are statistically tested. Finally if #; and v; are independently distributed,
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all parameters of equation (3.5.1) can be estimated by using maximum likelihood
estimation method. The log likelihood function is a simple generalization of that of
Stevenson’s (1980) truncated normal model having constant mode £ , with only one
change. Constant mode £ is now replaced by the variable mode ;= ) 'Z,- , S0 that the

log likelihood function is

N ! N * N ’ 2
In L=cons ‘[anz‘—gln(o;2 +0, )—Zln@(ﬁJJernCD[#—iJ—%Z[MJ
o o

2 2
i=1 u i=1 i=1 O-u + O-v

-------------- (3.5.4)
2 .0 2 2 2
. 0,y z,—0, € s O, 0,
Where g, =—"——*—+ 72' et =
C)-V +O—u O-V +o_ll

ande,=Iny, —In f(x,; ) are the residuals obtained from estimating equation (3.5.1)
simply by OLS. The log likelihood function of (3.5.2) can be maximized to obtain
ML estimates of (5, 7, O'v2 , O'j ). These estimates can then be used to obtain

producer specific estimates of technical efficiency, employing the Jondrow, Lovell,
Materov and Schmidt (1982) approach to find the best point estimates of technical

efficiency. These estimates are either

B, /)= +o" LHLT). (355)
Oy, /o)
Or
M, Jey=it T #=0 (3.5.6)
0  otherwise.

Once technical efficiency has been estimated, the effect of each exogenous or

environmental variable on technical efficiency can be calculated from either
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[0E(u,/e)/ 0z, ] or [OM(u;/e)/0z,] . Battese and Coelli (1995) model is an
improvement over the Kumbhakar et a/ (1991) model as, (i) it is based on panel
data and (i1) the non-negativity requirement ¥, :(V'Z,- +£)20 is modeled as
g ~ N(0, O'g2 ) with the distribution of €; bounded below by the variable truncation

point —7/'2,» . Battese and Coelli (1995) verified that this new distributional

assumption on &; is consistent with the assumption on u; that #; ~ N* (7'21.,0'3).

The trans-log (transcendental logarithmic) production function is a more flexible
functional form from which the Cobb-Douglas production function can be obtained as
a special case. The special advantage is that homogeneity restrictions are not directly
imposed as is done in case of a Cobb-Douglas form. However for practical reasons
direct estimation of trans-log production function parameters may not be possible due
to the presence of strong or near—perfect multi-collinearity among the explanatory
variable columns. The parameters of a trans-log function may still be estimated by
Seemingly Unrelated Regression Equation Method (SURE) but that would not serve
the purpose of frontier production function estimation (especially of the Battese and
Coelli, 1995 form) which requires a direct single step estimation of the production

function parameters as well as frontier and inefficiency effects parameters.

The present study thus prefers the Cobb-Douglas functional forms with three
endogenous inputs to specify the underlying technological relationship between inputs
and output. The three inputs are described in detail below. Two separate estimations
of production frontiers with inefficiency effects models are applied for single and
paired boat fishing teams with multiple catchers and single boats with single catchers

using nets.
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In(Y.)=Inpg,+p,InL, + B, InB. + B, InN, +(v, -u,) (3.5.7)

Here (3.5.7) is the Cobb-Douglas frontier model specification having three inputs —
labour (L), boat (B) and net (N). Exact description of all relevant variables used in the

study is imperative.

3.6 Variable Construction and Measurement

Output (Y))

In the present study output (Y;) is basically rupee value or money value of fish catch at
the fishing team level (converted to monthly figures, i.e. Rupees per month) recorded
at the time of sale during survey. This catch level pertains to the effort during a single
day by either the team or the individual. Repeated observation on catch level for the
same team/individual was possible in the present study which is obviously a
drawback. However since the peak fishing season was selected for the survey, the
catch level recorded during interview may be taken as an effective estimate of average
catch per day. This figure in rupee per day terms was converted to rupee/month
simply by multiplying by 30. In case of team of catchers (2 or 3catchers) with either
single or paired boats, the catch (or harvest) is basically a team level catch (or
harvest). In case of single catchers the catch is at the individual level as the catcher
does not have a partner or accompanying person. In sum the catch is measured in
terms of rupees/month at the team level or individual level, as the case may be. The

details of catch methods and catch teams are outlined in section 3.6.
Measurement of Inputs — Labour, Boat and Net

The three iputs labour, boat and net are all measured physically and not in nominal

rupee terms. This is not a technical or statistical problem as the same method is
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applied across all fishing teams in the sample. Labour (L), a flow input, is measured
in terms of labour hours per month for the i team. For instance members of a team
comprising of 2 members may each spend 5 hours daily on fish catch implying that
for this team daily labour hours spent is 10. If this team engages in fishing 5 days per
week then weekly labour hours spent by this team equal 50 or in other words monthly
labour hours equal approximately 200. A word of caution is needed here as the same
fishing team may have 2 to 3 members on different days of a week. In other words
for practical reasons the number of catchers may vary slightly across fishing days. In

such cases an approximation is most effective.

Fishing tools and equipments play the role of fixed capital or durable capital
equipments. These are stock variables or stock inputs in contrast with labour which is
a flow input. Boat size (B) in terms of length of the boat (in meters) is taken as a
proxy physical measure of boat capacity. Alternatively maximum human carrying
capacity could have been taken as a proxy measure of boat. However for practical
reasons maximum carrying capacity of a boat may be difficult to ascertain. The larger

the boat the greater would be the catch effort, so that length of the fishing boat.

In the present study length of net (N) in meters is taken as a proxy measure of net
capacity for each team. Arguably in open access fishing net is a heterogeneous input
like boat as because net density or gapping may vary across catchers given the fact
that in most places different catchers specialize in different types of fish. For the
fishing teams of Sone Beel included in the present sample, the nets are almost of
identical density or gapping and do not differ much across teams. From the field level

experience during the survey and corresponding interview it was found that almost all
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fishing teams use a particular type of net and on the ground net gapping does not vary

much across teams. Hence length of the net is taken as a measure of net capacity.

In sum, the production function for the present study models monthly output in value
terms (value of catch per month) as the outcome of catch effort due to labour (L), boat
(B) and net (N). In many similar studies it is customary Effort Index is not
constructed. Depreciation of fixed inputs like tools and equipments (i.e., boat and

net) is ignored.

There are some single catchers or one member teams that do not use net. For single
catcher fishing teams using non net inputs like dori (DR) and kathi (KT) are measured
in physical terms. Dari, which implies a cylindrical drum traps, measured in numbers
and kathi, a vertical slit trap is measured length in meters. These two are found to be

complementary inputs as these are jointly used for fishing.
Inefficiency Effects Variables

Finally the inefficiency effects components in the composed error term (v— ;) needs
to be elaborated in the context of the present study where z; are all non-input
inefficiency effects variables (refer to equations 3.5.2 and 3.5.3). In the present study

the inefficiency effects component has the following form.
V=AY 2yt Y 2y TV 2t Y s (3.5.8)

where, the z’s are firm specific non-input variables (some of which may be
categorical or dummy variables) that potentially influences the technical efficiency of

the fishing team or individual fisherman as the case may be.
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Inefficiency Effects Variables in Case of Team Catchers

In case of multiple or team catchers, Z,; is the experience (EXP) of the fishing team
members as measured by the average number of years spent by the catchers in fishing;

Zy; 1s education (EDU) of the catchers as measured by the average number of years of

formal schooling and Z,; captures non-fishing income (NFI) at the fishing team level

from agriculture and allied activities during slack season. The additional variable Zs; is

inapplicable for the team level analysis.
Inefficiency Effects Variables in Case of Individual Catchers

In case of the inefficiency effects model (3.5.8.), as applied to the frontier model on

single catchers, Z,;is the experience (EXP) of the catcher/fisherman as measured by

the average number of years spent by the catcher in fishing; Z;; is the non-fishing
income (NFI) of the catcher/fisherman from agriculture and allied activities during
slack season; Z,; (SAND) is type of sanitation system dummy (assumes 1 for safe or
improved sanitation/toilet facility in the catcher’s households, and 0 otherwise) and
Z5;(HTD) is housing type dummy of the catcher (value 1 if the catcher resides in a
pucca or semi-pucca house, and 0 otherwise).

In other words some dimensions of human development and quality of life indicators
are being captured by means of these non-input inefficiency effects variables. Non-
fishing income of the catcher (NFI) is supposed to raise per capita annual household
income and consumption thereby raising living standards. Type of sanitation in the

household is an effective indicator of physical standards of living as well as that of

health and the extent of hygienic practices in the household. The same is true for
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access to safe drinking water but for the present access of safe drinking water is
ignored. On the other hand the type of housing accommodation of the catcher or
fisherman is yet another indicator of physical standards of living and the life-style.
People residing in totally kutcha houses are expected to have lower standards of living

compared to people living in pucca or even semi pucca houses.

Fishing in open access water bodies such as large lakes and beels is largely dependent
on skill of the catcher(s) and arguably skill 1s heavily dependent on experience. The
experience of the team members is vital for increasing technical efficiency of the
team. In other words the present study hypothises that other things remaining the
same, the team having more experience on an average is expected to be technically
more efficient. Thus as a non-input variable, experience is supposed to have a
positive impact on technical efficiency or a negative impact on technical inefficiency.
In the mefficiency effects model the LHS of equation (3.5.8) represents inefficiency
effects and hence comes with a negative sign (see equations 3.5.2 and 3.5.3). Thus
negative coefficients of the z; terms imply negative influence on technical inefficiency

and hence positive influence on technical efficiency.

The inclusion of non-fishing income of the catcher as an inefficiency effects variable
needs clarification. In beel areas such as the one chosen for the present study (the
Sone Beel) water levels go down significantly during the dry season or the winter
months allowing for agricultural operations on the beel areas. Paddy cultivation
during the dry season is the most common agricultural practice in the Sone Beel
during winter months. Irrigation is not rain dependent as water is plentiful in some
low lying pockets which form small ponds or natural water-sheds. Interestingly all

fishermen do not have access to such land and hence either work as day labourers or
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do some unskilled jobs in the region when not engaged in fishing. However a
significant section of the catchers do engage in paddy cultivation during the winter
months on a small scale. In sum the fishermen have a source of livelihood (or say
income) in the form of a non-fishing income during the non-fishing season or the dry
season when the water body shrinks immensely making fishing very difficult, if not
impossible. The present study hypothese NFI as an inefficiency effects variable that
can potentially influence technical efficiency of the fishing team as well as that of the
individual catcher. NFI or non-fishing income may have a dampening effect on
technical efficiency of fish catch. Catchers with relatively high NFI may be dedicated
to some economically gainful activity other than fishing either during slack season or
even during a part of the peak season. In such situations attention and dedication
towards fishing is likely to be compromised. Thus the dedicated fishermen or catchers
are expected to be relatively unskilled in non-fishing activities and hence their NFIs
are likely to be low. This seems to suggest that lower the NFI, higher is the
dependence of the catcher on fishing for his livelithood. Thus for catchers with low
NFIs, dedication towards fishing is expected to be high. This study anticipates a

negative relationship between NFI and technical efficiency of fish catch.

Arguably formal education has little to do with technical efficiency of fish catch in
Sone Beel, especially during the peak monsoon months when fishing is subject to
open access. Efficiency in fishing does not depend on the extent of formal education
but rather on the experience. Interestingly higher the years of schooling, greater is the
possibility of dependence on non-fishing sources for livelithood. Catchers in the
region are poor (i.e., belonging to BPL category, discussed in the findings in Chapter
4), with very little or no formal education or schooling. In the present study education

(EDU) as measured by the number of years of formal schooling acts as a proxy for
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awareness and overall knowledge about one’s surroundings, nothing more. Education
1s deliberately kept as a non-input variable in the inefficiency effects model to capture

the impact of overall awareness on catch efficiency.

Finally sanitation type dummy and the housing type dummy could not incorporated in
the team level efficiency analysis as these dummies would assume different values for
different members of a team making it difficult to model or quantify at the team level.

For the individual catchers however there is no such complication.

Hypothesis Testing in the Frontier Model

Testing the null hypothesis no technical inefficiency is important. The null hypothesis
of no technical inefficiency can be tested by applying the Likelihood Ratio Test. The

likelihood ratio test is based on the likelihood ratio statistic (LR) defined as,

LR==2In[L(H,)/L(H,)] (3.5.9)

Where, L(H) and L(H 1) are the optimum values of the likelihood function under

the null hypothesis (no technical inefficiency or OLS) and alternative hypothesis
(presence of technical inefficiency under the Aigner et al. 1977, Normal— half-Normal
error specification) respectively. But since the hypothesized value of A (which equals
0,/0y,) lies on the boundary of the parameter space it is difficult to interpret the test
statistic. It can be shown that the LR statistic in (3.5.9) follows a mixed y* distribution
that asymptotically approaches y* distribution with degrees of freedom equal to the
number of restrictions imposed in the model (Coelli, 1995). Similar is the test of the
hypothesis that inefficiency effects are totally absent in the model. To test that null
hypothesis of no inefficiency in the data, which is equivalent to setting A = 0 the

Kodd and Palm (1986) critical values for relevant degrees of freedom are used. All
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estimations are done using the software package FRONTIER 4.1 for WINDOWS

(Coelli, 1996).

3.7 Survey Methods and Data

Data for the present study is completely primary in nature and is based on information
collected between July and September 2013, from Sone Beel fishing boat-landing
sites. Fishing in the Sone Beel is officially managed by the Sone Beel Fishermen
Cooperative Society (established in 1975). A new set up for the management of
market transactions related to fish catch that includes auctioning and bidding (called
Machher Arath, 1.e., the whole sale trading and transactions place) was formed in July
2012. Under this newly formed institution, fish catchers and sellers sell their daily
catch indirectly through a formal bidding system. The number of fish auctions
observed in the landing sites are 3 to 4 and this number fluctuates depending on the
season. However, only 2 — 3 auctions are found to be active and functional on a
regular basis. It was further observed that this system of fish bidding helps fishermen
to get better prices for their daily catch. However, catchers are charged with five
percent of the value of their daily catch as fee on account of participation in the

organized bidding under the Machher Arath.

The necessary information was collected from selected single boat using fishermen
from the Sone Beel fish-landing sites employing the direct interview method. A well
structured pretested survey schedule was used that focused specifically on sale and
quantity of catch, labour hours spent, fishing equipments, socio-economic features
etc. The face-to-face interviews were conducted in collaboration with four
functionally literate volunteers (selected to carry out field survey) from the fishing

community. Two enumerators having satisfactory working experience in the field
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(graduates) helped the volunteers along with the local members (involving with Sone
Beel Fishermen Cooperative Society) in the survey work. These volunteers have
regular contacts with fishing households dwelling around the Sone Beel. Around 50 to
60 fishing teams with their boat usually land in the fish-landing sites between 6 — 7
AM during the peak fishing season. The crew members engaged in selling and
grading of fish in the auctions, varies from two to four persons. In view of the
unorganized nature of the transactions activity, data collection was challenging,
especially when fishermen were uninterested in facing the interview. Lack of
willingness to cooperate was perhaps due to the excessive workload and physical
stress and strain associated with catch and sale of fish during the peak working hours
during (6 — 8 AM). Expectedly, the fishermen are extremely busy over their
respective transactions during peak hours and are hardly in a position to face
interviews. Time and place had to be suitably chosen so as to undertake an
uninterrupted interview with the single boat using fishing team members. Strictly
speaking, under such circumstances, random sampling (and even systematic

sampling) is difficult if not impossible.

As per secondary data collected from Sone Beel Fisherman’s Cooperative Society
office, the total number of registered fishermen under the society is 4934. These
people belong to traditional fishing community. Three distinct types of fishing teams
are commonly observed in the Sone Beel — (i) paired boat with 6 to 8 catchers, (ii)
Single boat with 2 to 3 catcher (net users) and (iii) single boat single catchers (a few
with net, and others with various traditional equipments). In the present study all
distinct types of fishing teams are separately taken into consideration for measuring

technical efficiency.
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No official statistical records on the number of fishing boats currently engaged in
fishing in the Sone Beel are available. According to a’ priory information (based on
unofficial sources), there could be total of number of 50-60 paired boat fishing teams
(each team comprising of 6 to 8 catchers), out of which 16 paired boat teams are
included in the present study. As per Panchayat level and other block level sources the
total number of catchers using single boats could be around 600. Out of these, 149
single boat using teams with 2 to 3 catchers and 16 paired boats are selected for the

study. Thus number of net using fishing teams with multiple members equal 165.

Single catchers using single boats comprise yet another category of fishermen in the
Son Beel. 160 such catchers are included for study in the present sample. However
not all catchers out of these are net users. Out of these 60 single catchers in the
present sample do not have access to net and use traditional fishing tools and
equipments such as fish traps like cylindrical drum traps, vertical slit traps (locally
known as dori and kathi). Net using single catchers (equaling 100), and dori and

kathi using single catchers (equaling 60) have been separately analyzed in the study.

Thus in a nutshell the types of catchers along with the subsample sizes in the present
study are as follows: (i) single boat using team catchers with 2 to 3 members (149),
(i1) paired boat using team catchers with 6 to 8 members (16), (iii) single boat using
single catchers with net (100) and (iv) single boat using single catchers without net
(60). Thus total sample size of teams in the present study is 149 + 16 + 100 + 60, 1.e.

a total of 325 teams.

Because of the flow nature of the population in the boat landing sites, strictly random
sampling could not be conducted. For the present study a convenient large sample of

165(including single boat using fishing teams comprising of 2 to 3 members and for
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paired boat teams comprising of 6 to 8) members is chosen. And 160 of single boat
single catchers (i.e., 100 single boat with net users and 60 single boat without net
users). The overall number of boats in the present study was covered as 325 which is
around 54 percent of the total fishing boats in the study area. The sample size is quite
large relative to the size of the population and thus small sample bias may be ruled
out. The sample size was fixed using the following formula when population size is
not exactly known. n = Z2.s?/d? where n is the minimum sample size to be
chosen, Z 1is the value of the standard normal distribution function at 0.05 level, S'is
the population standard deviation of the variable, and d is acceptable standard error of
the mean of the variable of interest — value of fish catch in this case. Since exact size

of the population is not known, § is fixed through a pilot survey. Specifically, s =

S.y/7/(n — 1) where n'is the sample size for the pilot survey, and s'is the standard
deviation of value of catch computed from the pilot survey. Clearly the smaller is d
the larger 1s the minimum sample size needed for statistically robust estimation and

inference.

Labour effort 1s heterogeneous across fishing teams as because 87 fishing teams in the
sample (out of 149 fishing teams), have 3 catchers while the rest, i.e., 62 fishing teams
have 2 catchers per team. In other words there are 87 times 3 plus 62 times 2, or a
total of 385 catchers in all in the sample of 149 fishing teams. For pair boat teams (out
of 16 fishing teams), there are a total of 110 catchers in all in the sample of pair boat
teams. All fishermen were interviewed for necessary information on key production
function related variables such as value of catch, labour hours spent, and fishing tools
and equipments like nets and boat. Moreover data on certain non-input factors as,

experience in fishing, years of formal schooling and income from sources other than
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fishing were collected through the personal interview. Data collection was not
possible during the fish auction hours due to large and spontaneous public gathering
and outcry. The surveyors had to tailor interview time and place according to the
convenience of the catchers. The availability of the fishermen during busy working

hours was the other key concern.

In short the interviews were conducted just after sales of fishes when the catchers
were relatively free and away from crowded gatherings. Interviewing became a lot
easier when participants could relax and feel comfortable. Interviews were carried out
in usual places of gathering and hang-outs such as tea stalls adjacent to the transaction
sites. The respondent of each team was mainly the skipper or boat owner who
provided precise information regarding fishing practices of his team. Open ended
discussions centered around vessel use, fishing duration, quantity of daily catch, types
of fish, income, and even on their respective household conditions. Discussions also
focused on overall constraints faced by fishers and the ecological condition of fishing
sites. The duration of the interviews with each group was approximately twenty
minutes. However for single catcher teams the data was collected from the fishing
households because socio economic variables (for example number of family
members, education, housing structure and sanitary facility, etc.) are important to

fulfill the desired objectives and this can only be possible from household survey.
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