Chapter Three

MODELS, METHODOLOGY AND
DATA

This chapter presents the models, methodology and data sources for the present
study. To start with measures of monetary aggregates in India are briefly presented
followed with data sources and variable selection for the study. Methods undertaken
for detrending are then narrated along with structural break test methods. Unit root
tests under structural breaks are then discussed. This is followed by an approach to
causality in time series econometrics. The Toda — Yamamoto method adopted in this
study is presented in detail. Finally Vector Autoregression and its mathematical

underpinnings are outlined.

3.1 Monetary Aggregates in India

All the money held with public, RBI as well as government is called Total Stock of
Money. Money Supply is that part of this Total Stock of Money which is with public.
Public refers to the households, firms, local authorities, companies etc. Thus, public
money does not include the money held by the government and the money held as
CRR with RBI and SLR with themselves by commercial banks. The reason of
excluding the above two categories from money supply is that this money held by the
Government and RBI is out of circulation. Thus money in circulation is the money

supply. This money can be in the following forms.
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K/
0’0

Currency Notes and Coins Demand Deposits such as Saving Banks Deposits,
¢+ Other Deposits such as Time Deposits / Term Deposits / Fixed Deposits

% Post Office Saving Accounts

.0

Cash in Hand (Except SLR) and Deposits of Banks in other Banks / RBI

)

(except CRR)

In other words, this money has two components viz. Currency Component and
Deposit Component. Currency Component consist of all the coins and notes in the
circulation, while Deposit component is the money of the general public with the
banks, which can be withdrawn by them using cheques, withdrawals and ATMs.

Deposit can be either Demand Deposit or Time Deposit.

The Reserve bank of India calculates the four concepts of Money supply in India.

They are called Monetary Aggregates or Money Stock Measures. They are as follows:
Narrow Money (M1)

At any point of time, the money held with the public has two most liquid components.

Currency Component: This consists of all the coins and notes in the circulation.

Demand Deposit Component: Demand Deposit component is the money of the
general public with the banks, which can be withdrawn by them using cheques,
withdrawals and ATMs. The above two components i.e. currency component and
demand deposit component of the public money is called Narrow Money and is
denoted by the RBI as M 1. Thus,

M1 = Currency with the public + Demand Deposits of public in Banks. When a third
component viz. Post office Savings Deposits is also added to M1, it becomes M2.

M2 = M1 + Post Office Savings deposits.
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Broad Money (M3)

Narrow money is the most liquid part of the money supply because the demand
deposits can be withdrawn anytime during the banking hours. Time deposits on the
other hand have a fixed maturity period and hence cannot be withdrawn before expiry
of this period. When we add the time despots into the narrow money, we get the broad
money, which is denoted by M3. M3 = Narrow money + Time Deposits of public
with banks. Broad money does not include the interbank deposits such as deposits of
banks with RBI or other banks. At the same time, time deposits of public with all
banks including the cooperative banks are included in the Broad Money. The major
distinction between the M1 and M3 is in the “Treatment of deposits with the banks”.
Going a little deep, the M3 is the treatment of “Time Deposits” of the public, since
demand deposits are available against cheques and ATMs. Adding the Post Office
Savings money also into the M3, it becomes M4. Both M2 and M4 which include the
Post office Savings with narrow money and broad money respectively are now a days
irrelevant. Post Office savings was once a prominent figure when the banks had not
expanded in India as we see them today all around. The RBI releases the data at times
regarding the money supply in India and Post Office Savings Deposits have not been
updated frequently. There is not much change in the money of people deposited with
the Post office and RBI did not care to update this money. Further, there was a time
when the Reserve Bank used broad money (M3) as the policy target. However, with
the weakened relationship between money, output and prices, it replaced M3 as a
policy target with a multiple indicators approach. RBI started using the Multiple
Indicator Approach since 1998. Currently, Narrow Money (M1) and Broad Money
(M3) are relevant indicators of money supply in India. The RBI in all its policy

documents, monthly Bulletins and other documents shows these aggregates. The
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present study takes M; as the measure of narrow money supply and M3 as the measure

of broad money supply.

3.2 Data

The present study uses secondary level time series data for the period 1960-2010.
The principal data sources are, (1) Reserve Bank of India: Handbook of Statistics on
the Indian Economy (various issues), (2) Reserve Bank of India: Report on Currency
and Finance (various issues), (3) Reserve Bank of India Bulletin (various issues), and
(4) Reserve Bank of India: Annual Report (various issues). The variable selection is

detained in the table below.
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Table 3.1. Variable—wise time periods of Annual Time Series Data for the Study

Variables Data Period No. Of Time Points
Constant Price GDP or Real GDP (RGDP with
1960 — 2010 63
base year as 2004-05)
Real GDP Growth Rate (RGDPGR) 1960 — 2010 | 62 (1** data point excluded)
Broad Money (BM) 1960 — 2010 60
Broad Money Growth Rate (BMGR) 1960 — 2010 | 59 (1** data point excluded)
Narrow Money (NM) 1960 — 2010 60
Narrow Money Growth Rate (NMGR) 1960 — 2010 | 59 (1** data point excluded)
Revenue Expenditure (REVEXP) 1960 — 2010 63
Capital Expenditure (CAPEXP) 1960 — 2010 63
Govt. Expenditure (G) 1960 — 2010 63
Revenue Deficit (REVDEF) 1972-2010 42
Fiscal Deficit (GFD) 1970-2010 44
Whole-sale Price Index (WPIAC)
1960 — 2010 62
(base year 1952-53)
WPI Inflation (INFLA) 1960 — 2010 | 61 (1** data point excluded)
Consumer Price Index with base
1960-2010 54
year 1960-61 (CPI)
Bank Rate (BR) 1961-2010 53
Cash Reserve Ratio (CRR) 1972-2010 42
Statutory Liquidity Ratio (SLR) 1961-2010 53

Source: Compiled from RBI: Handbook of Statistics on the Indian Economy, 2010.
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Although the objectives of the study pertain to the period 1960-2010, in case of some
variables data was obtained for a longer period while for a few others the data series

was available over a shorter period.
3.3 Exponential Detrending

Long run macroeconomic data is most likely to have a trend — linear or non-linear. A
glance at the time series line plots for each variable during 1961-2010 (not presented)
reveals strong non-linear trends in all three variables. Both parabolic and exponential
curves are fitted to each variable and the goodness of fit statistics are compared. The
results are strongly suggestive of exponential trends in each of the variables.
Accordingly, the exponentially detrended series on each variable are preferred for
analysis. The detrended data is generated using the following steps. First, the natural
logarithm of the variable is regressed linearly on a constant and time, i.e., the linear
regression In(y;) = In(a) + B.t + error, is run where y, is the variable to be
detrended. This is a log-linear form of the exponential growth (or smoothing)
function y, = a.exp(fB.t). Second, the parameters o and f are estimated using OLS
and predicted /n(y,) series is generated. Third, anti-log of predicted /n(y,) is generated,
which is predicted y; in non-logarithmic form. Finally e; = y; — ¥; is the residual
from the exponential smoothing (or curve fitting) in non-logarithmic form and is thus
the part of y, that is free from any exponential trend (where y; is predicted y, in non-
logarithmic form). Hence, e; is exponentially detrended y,. This method is applied to

detrend both variables — fiscal deficit and broad money supply.

Standard tests for stationarity may be misleading for non-linearly trended data (for
instance quadratic or exponential, both of which are rising at a rising rate over time)

as because standard tests of stationarity such as Augmented Dickey-Fuller and
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Philips-Perron tests include linear trend terms only (i.e., some ‘constant’ times
‘time”). For an exponentially growing variable, stationarity may not be attained even
at second difference, although for de-trended series it may be attained either at level
(if trend stationary) or at first difference. Moreover, the autocorrelation function
(ACEF) helps us to select the lag lengths p (order of AR) and g (order of MA) and the
ACEF of the residuals is an important diagnostic tool. Unfortunately ACF as used in
linear models may be misleading for non-linear models. The reason is that
autocorrelation coefficients measure the degree of linear association between Y, and
Y. (Y is the time series variable in question). As such ACF may fail to detect
important non-linear relationships in the data. It is thus desirable to work with

detrended data.
3.4 Testing Stationarity in the Presence of Structural Breaks

In the long run macroeconomic variables are expected to experience structural breaks,
some of which may be the result of macroeconomic policy shifts, regime changes, or
random shocks (droughts, warfare, socio-political instability and violence, etc.) at the
domestic level or due to similar factors at the international level. The present study
applies the Bai-Perron (1998 and 2003) multiple unknown structural break point test
to original as well as the detrended series and compares the periods of break for each
of the variables. Instead of going into the mathematical details, the method of break
date determination as performed using EVIEWS 9 is as follows. First the time series
variable in question is regressed (using OLS) on a constant only allowing for serial
correlation that varies across break dates (regimes) through the use of HAC
covariance estimation. Three break dates are considered along with a trimming

percentage of 20, which implies around 12 observations per regime (as the period
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1970-2010 implies 45 observations). Since the errors are assumed to be serially
correlated, quadratic spectral kernel based HAC covariance estimation is specified
using pre-whitened residuals. The kernel bandwidth is determined automatically using
the Andrews AR(1) method. The default method setting in EVIEWS 9 (sequential
L+1 breaks vs. L)instructs the software to perform sequential testing
of 1+1 versus / breaks using the methods outlined in Bai (1997) and Bai and Perron
(1998).  The error distribution is allowed to differ across breaks to allow for
heterogeneity. This test employs the same HAC covariance settings as used in the
original equation but assumes regime specific error distributions. The break dates
along with the respective F-statistic values are presented in the results empirical

section. Stationarity related issues are discussed next.

Perhaps the most widely used unit root test to examine the stationarity of a time series
(order of its integration) is the Augmented Dickey-Fuller test (ADF test) which makes
use of equation (3.1). This generalised form includes both trend and intercept in the

model.
Ay = ag+ y. Vi1 + a1t + Zleﬁi.Ayt_i + & (3.3.1)

Equation (3.1) tests the null hypothesis of a unit root against a trend stationary
alternative. The optimum number of lagged Ay, terms (introduced to tackle serial
correlations in the errors) may be determined by the optimum value of some
information criterion such as Schwartz’s Information Criterion (SIC). Phillips and
Perron (1988) proposed a nonparametric method of controlling serial correlation
while testing for unit root. They estimate the unaugmented Dickey-Fuller test

equation [Equation (3.3.1) without the term
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(Zf=1 Bi-A y:_;) on the right hand side], and modifies the t-ratio of the y coefficient

so that serial correlation does not affect the asymptotic distribution of the test statistic.

Kwiatkowski, Phillips, Schmidt and Shin (1992) propose a test of the null hypothesis
that the observed series is stationary around a deterministic trend. The series is
expressed as the sum of deterministic trend, random walk and stationary error and the
test 1s the LM test of the null hypothesis that the random walk has zero variance. The
asymptotic distribution of the statistic is derived under the null and under the
alternative that the series is difference stationary. KPSS test is quite contrary to the
ADF and PP tests which consider the null hypothesis of unit root (i.e. a non-stationary
series) as opposed to the former (KPSS) which considers a null hypothesis of

stationary series.

The ADF and other traditional stationarity tests do not normally include a structural
break term. But one can insert structural break dummies (say, seasonal dummies, for
example) in equation (3.3.1) that may include both slope and intercept dummies. The
point of break may be exogenously determined (approximately) by a visual scrutiny
of the time series line plots. Importantly, the ADF test fails to perform well in the
presence of structural breaks especially when the breaks are ignored. In such
situations unit root tests with structural breaks are more suitable [see Perron (1989);
Zivot and Andrews (1992)]. Perron (1989) demonstrated, assuming an exogenously
fixed break date, that the power to reject the null hypothesis of unit root decreases
(given that the alternative hypothesis of stationarity is actually true) when the

structural break is ignored.

Zivot and Andrews (1992) suggest an improvement over the Perron (1989) test where
they presume that the exact break point is unknown and endogenise the break date
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determination. A data dependent algorithm is used to proxy Perron’s subjective
procedure to determine the break points endogenously. Following Perron’s
characterization of the form of structural break, they adopt the following three models

to test for unit roots.

14
Ay, = ag+ y.¥i_1+ a1. t+6.DU; + Z,Bi.A Ve + & (Model A)
i=1
p
Ayt == ao + y yt—l + al. t + BDTt + Z .Bi-AYt—i + Et (Model B)
i=1

p
Ay, = ag+ V.yt-1 + a1.t +6.DU; + 6.DT; + Z,Bi.Ayt_i + & (Model C)

=1

Here DU, captures mean shift occurring at each possible break-date (TB) while DT} is
corresponding trend shift variable. Formally the values assigned to DU; and DT; may
be summarised as follows. DU, = 1 for t > TB, and = 0 otherwise. On the other

hand DT, =t —TB for t > TB, and = 0 otherwise.

The null hypothesis in all three models is that y = 0, which implies that {y,} has a unit

root with drift without any structural break. The alternative hypothesis if y < 0,
implies that the series is a trend-stationary with a single break occurring at some
unknown time point. Zivot and Andrews regard every point as a potential break-date
(TB) and run a regression for every possible break-date sequentially. From all possible
break-points (7B), the procedure selects as its choice of break-date (7B5) the date
which minimizes the one-sided t-statistic for testing y = 0 against y <0 [or y = (¢ — 1)
< 0]. According to Zivot and Andrews, the presence of the end points cause the
asymptotic distribution of the statistics to diverges towards infinity. Therefore, some

region must be chosen such that the end points of the sample are not included. More
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recently, Sen (2003) showed that if one uses model A and if the break occurs
according to model C then there would be a sizeable loss in power of the test.
However, if break is characterized according to model A, but model C is used then the
loss in power is negligible, suggesting the superiority of model C over model A.
While Zivot and Andrews (1992) and Perron (1997) determined the point of break
‘endogenously’ from the data, Lumsdaine and Papell (1997) suggested an
improvement over the Zivot and Andrews (1992) model by incorporating a couple of
structural breaks. However, such endogenous tests have been subject to criticism for
their treatment of breaks under the null hypothesis. If the breaks are absent under the
null hypothesis of unit root these tests may suggest evidence of stationarity with
breaks (Lee and Strazicich, 2003). Lee and Strazicich (2003) on the other hand
propose a two break minimum Lagrange Multiplier (LM) unit root test in which the

alternative hypothesis unambiguously implies that the series is trend stationary.

3.5 Toda - Yamamoto Modified Granger Causality under VAR

Environment

A simple definition of Granger Causality, in the case of two time-series
variables, Xand Y is as follows. "xis said to Granger-cause y ify can be better
predicted using the histories of both x and y than it can by using the history
of y alone." The absence of Granger causality can be tested by estimating the

following VAR model (equations.3.5.1 and 3.5.2).
Ye= a+ X aiye_; + Di_y Bixeoi + Uge (3.5.1)

xe=p+ 2?21/11'3’1&4 + Z?:l Oixe—i + Uy (3.52)
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For the present study y,represents detrended real WPI for India and x, represents
broad money supply or G. X does not Granger cause Y is tested by Hoi: 1 = 2 =
-+ = B, = 0 against the alternative that ; # f, # --- # B, # 0. On the other hand
Y does not Granger cause X is tested by Hp: 4; = A, =+ = 1, = 0 against the
alternative the Ay # A, # -+ # 4, # 0. In each case rejection of null hypothesis
implies the presence of Granger causality. The modified Wald test for testing
Granger causality as proposed by Toda and Yamamoto (1995) avoids the problems
associated with the usual Granger causality testing (which ignores non-stationarity
and co-integrations between series while testing for causality). If the Wald test is
being used to test linear restrictions on the parameters of a VAR model, and the data
are non-stationary (which is most likely), then the Wald test szatistic does not follow
its usual asymptotic chi-square distribution under the null hypothesis (Toda and

Yamamoto, 1995).

The approach to modified Granger causality as adopted in this study is outlined as
follows. First, each time series variable is tested for stationarity (or for its order of
Integration) using standard tests such as ADF, PP and KPSS. The maximum order of
integration (m) for the group of time-series is determined. Structural breaks if any are
identified and a structural break dummy variable is created. Second, a VAR model is
set up in level, regardless of the orders of integration of the various time-series. None

of the variables are differenced.

Third, the optimum lag length for each variable in the VAR, say p, is determined
using AIC, SIC, HQ, or other usual statistics. Care is taken so that there is no serial
correlation in the residuals. The length p may be increased slightly until

autocorrelation issues are resolved. Normality of the VAR residuals is highly

85



desirable. Fourth, if both the time-series have the same order of integration, then
Johansen Co-integration test is applied to test for co-integration (based on the selected
VAR model). It provides some cross-check on the validity of the Causality results.
Fifth, the favoured VAR model is constructed and additional m lags of each variable
are inserted into each equation. In EVIEWS 9 these new m variables are to be treated
as exogenous to the VAR system. The structural break dummy is also added (not
shown) as an exogenous variable. It is thus ensured that the additional m lags and the
structural break dummy would not be dropped while testing for Granger non-causality

(via the Wald tests). The new VAR is presented in equations (3.5.3) and (3.5.4).

+m +m
Ye= a+ D aye i + X0 aye + Xl Bixei + X100 Bixeoj + gy

[3.5.3]

_ p p+m p p+m
X = B Xic QVeoi t Xjopi1 GVe-j T Dimg Bixe—i + Xjspp1 BiXe—j + Uae

[3.5.4]

Finally, the hypothesis that the coefficients of only the first p lagged values of x are
restricted to zero in the first equation, is tested using the standard Wald test (to test
Hoi: x does not Granger cause y). Analogously, a similar procedure is followed to test
that y does not Granger cause x. The Wald statistic under the null hypothesis will be
asymptotically distributed as chi-square with p degrees of freedom. Importantly
enough, if two or more time-series are co-integrated, then there must be Granger
causality between them (either uni-directional or both ways). The converse however 1s
not true. Thus causality may be present without co-integration. The following section

presents empirical results of the study along with discussions.

According to Zapata and Rambaldi (1997) the advantage of using the Toda-

Yamamoto procedure is that in order to test Granger causality in the VAR framework,
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it i1s not necessary to pre-test the variables for the integration and co-integration

properties, provided the maximal order of integration of the process does not exceed

the true lag length of the VAR model. According to Toda and Yamamoto (1995),

Toda-Yamamoto procedure however does not substitute the conventional unit roots

and co-integration properties pre-testing in time series analysis. They are considered

as complimentary to each other.

3.6 Vector Auto-regression (VAR)

For a set of n time series variables y, =(y,,»,,....,) , @ VAR model of order p

(VAR(p)) can be written as, y, =4y, + 4y, ,+..+ 4,y _,+u, ,

where, the 4.’s are (nxn) coefficient matrices and u, = (u,,,u,,,...4,) 1S an unobservable

1.1.d. zero mean error term. Consider a two-variable VAR (1) with k = 2.
(3.6.1) y,=by—by,z, +¢ v ez, + €y
(3.6.2) z, =byy—byy, + ¢y + ez T E,

with &, ~iid(0,0) and cov(e,,.)=0

In matrix form:  (3.5.3) Ll bﬂt’} = BO}{Z” S‘Z}B"}{?’}
21 t 20 21 22 t-1 zt

More simply, (3.5.4) BX,=T,+T\X,, +¢,

which is a structural VAR (SVAR) or the Primitive System.

To normalize the LHS vector, we need to multiply the equation by inverse B:

B'BX,=B"T,+B'T\X,, +B¢,, thus,

(3.6.5) X,=4,+4X,, +e
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which is a VAR in standard form (unstructured VAR or UVAR).

Alternately,

(366) |:yt:|:|:a10:|+|:all a12:||:yz1:|+|:€|t:|
z, ay ay, Ay || 2,4 ey,
These error terms are composites of the structural innovations from the primitive

system.

1 1 —b
e, =B'¢, where B :LBG = _(B*)T = ! 12
|B] |B| (1=byby) | =by 1

B* =cofactor of B and (B*)" =transpose.

Thus (3.5.7) |% [c— L | ' ~hefés
o € (I=bybyy) [~ by 1 &y

bye.

g — &
Or ¢, :”T where A=1-b,b,,

B —b218yt +¢,
A

eZt
{ 1 1 ] 2y -
&'s are white noise, thus e’s are (0,07):

E(e,)=0

2 2 2 2 2 2
E (gyt +b,¢2,) o, + b0
A N

Var(e,) = E(e}) = is time independent, and the same is

true for Var(e, ). But covariances are not zero. This can be seen from,

E -b _—b — (b0 +b,0°
Covar(e,,e,) = E(e,e,,) = [(5y; 12‘922(‘9_z 2160 ]: ( 120-zA2 210y) 20
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So the shocks in a standard VAR are correlated. The only way to remove the
correlation and make the co-var = 0 is if we assume that the contemporaneous eftects

are zero: b, =b, =0.

The var/covar matrix of the VAR shocks are represented as,

2
|01 Op
3= 2
Oy O,

Identification

We can estimate (3.5.6) with OLS, since the RHS consists of predetermined variables
and the error terms are white noise. The errors are serially uncorrelated but correlated
across equations. Although SUR could be used in these cases, here we do not need it
since all the RHS variables are identical, so there is no efficiency gain in using SUR
over OLS. But we cannot use OLS to estimate the SVAR because of

contemporaneous effects, which are correlated with the ¢'s (structural innovations).

To see how a structural innovation ¢, affects the dependent variables in our original

model.

Sims (1980) suggested using a recursive system. For this we need to restrict some of
the parameters in the VAR. Assume y is contemporaneously affected by z but not
vice-versa. Thus we assume thats,, =0. In other words, y is affected by both structural
mnovations of y and z, while z 1s affected only by its own structural innovation. This
is a triangular decomposition also called Cholesky decomposition. Then we have 9
parameter estimates and 9 unknown structural parameters, and SVAR is exactly

1dentified.
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Now the SVAR system becomes:

(3.6.8) [l b}{yHbH }HH
0 1 zZ, b20 Cy Cp |l 24 £,

B! = 1 [ 1 _b12:| ZF _b12:|
(1_b21b12) _b21 1 0 1

Hence the VAR system in standard form can be written as,

(3.6.8") |:yz} _ |:b10 - blzbzo} + |:(cll —b,cy) (¢ _b12c22):||:y11:| + |:gyt _b12€zt:|
Z by, Gy Cy Zi4 &,

If we match the coefficients in (8) with the estimates in (3.5.6)

[y ,} - {“‘0} J{““ “IZ}P H}F[Qq , we can extract the coefficients of the SVAR:

Z ay Ay Ay | 24 €y
ayy = by — by, Ay =by, e =¢&,—bye.

ay =¢;y —byey Gy =y € =e.

__(b|26:2+b216i)_ 2
= 5 =—b,,0.
A

Ay = —bey Gy =Cxp C0V12

Impulse response functions

We want to trace out the time path of the effect of structural shocks on the dependent
variables of the model. For this, we first need to transform the VAR into a VMA

representation.

Rewrite the UVAR more compactly.

A e
0 + t

BS99 X, =4, +4 X, +e, =X, =
I-AL I-A4L
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First, consider the first component on the RHS:

|:1—a” —ap :|A |:]_azz s :||:a101|
4 :(I_Al)—lez(I—Al)aAo: —a, l-ay 0_ a, l—ay, || ay

I-4 |[_A1| l-a, =-ap, - (I-a; )1 -ay)—aya,

—ay, l-ay

_ l|:(1 — 0y )ay + a21a20:| _ |:_:|
Al apay +(1—-ay)ay, z
Stability requires that the roots of 7—4,L lie outside the unit circle. We will assume

that it is the case. Then, we can write the second component as:

1
e, i ay A || -
t _ 0 i N g1
Zi:() Al € _Zi—0|:

I=AL ) 21 Ay
We can thus write the VAR as a VMA with the standard VAR’s error terms.
y w | A a : €,
(3.6.10) [”}P}ZO[ n IZH y }
% z TGy Gy || €
—
)

But these are composite errors consisting of the structural innovations. We must thus

1 -b
replace the e’s with the ¢'sfrom (7) e, = %{ A 112} €,
921

y ' 1 —b, & v o o0 Te
(3.6.10a) |7 |=| Y |eyr,—L HES [T [0 et ]e
Z; 4 1- bb,, | - b,, 1 &,y z i @gl) q)(ztz) £,

(I)l

= A_/ + ZIOO:O q),‘gt—i .
Impact multipliers

They trace the impact effect of a one unit change in a structural innovation. Ex: find

the impact effect of ¢_, on y,and z, :
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dz,

d
2 - @,,(0) de

de

=D, (0)

zt zt

Lets trace the effect one period ahead on y,, and z,,

d 1+ dZ+
L= () =)

Note that this is the same effect on y, and z, of a structural innovation one period ago:

dy dz
t — d) 1 t
i, (M

= @22(])

2l
Impulse response functions are the plots of the effect of ¢, on current and all future y
and z. IRs show how {y} or {z,} react to different shocks. Impulse response
function of y to a one unit change in the shock to z may be expressed as,

= 0,00), D,(1), D,(2), ...

Cumulated effect is the sum over IR functions: > ®@,,().

Long-run cumulated effect: lim > @, (i)

In practice we cannot calculate these effects since the SVAR is under-identified. So

we must impose additional restrictions on the VAR to identify the impulse responses.

If we use the Cholesky decomposition and assume that y does not have a

contemporaneous effect on z, then 4,=0. Thus the error structure becomes lower

triangular:

@ []-[ ]

The & shock doesn’t affect z directly but it affects it indirectly through its lagged

effect in VAR.
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Granger Causality: 1f the z shock affects e;, e, and the y shock doesn’t affect e2 but it

affects ey, then z is causally prior to y.
3.7 Causality in Time Series Econometrics — Granger and Sims

Perhaps the most influential explicit approach to causality in economics is due to
Clive W. J. Granger (1969). Granger causality is an inferential approach, in that it is
data based without direct reference to background economic theory; and it is a process
approach, in that it was developed to apply to dynamic time-series models. Granger
causality is an example of the modern probabilistic approach to causality, which is a
natural successor to Hume (e.g., Suppes 1970). Where Hume required constant
conjunction of cause and effect, probabilistic approaches are content to identify cause
with a factor that raises the probability of the effect: A causes B if P(BJA) > P(B),
where the vertical “[” indicates “conditional on”. The asymmetry of causality is
secured by requiring the cause (A) to occur before the effect (B). Granger’s (1980)
definition is more explicit about temporal dynamics than is the generic probabilistic
account, and it is cast in terms of the incremental predictability of one variable

conditional on another:

X Granger-causes Yy if P(Y| all information dated t and earlier) # P(Y| all

information dated t and earlier omitting information about X).

More generally, since the future cannot predict the past, if variable X (Granger) causes
variable Y, then changes in X should precede changes in Y. Therefore, in a regression
of Y on other variables (including its own past values) if we include past or lagged
values of X and it significantly improves the prediction of Y, then we can say that X

(Granger) causes Y. A similar definition applies if Y (Granger) causes X.
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Christopher Sims (1972) famously used Granger-causality to demonstrate the causal
priority of money over nominal income. Later, as part of a generalized critique of
structural econometric models, Sims (1980) advocated vector auto-regressions
(VARSs) — a theoretical time-series regression, but generally including more variables
with lagged values of each appearing in each equation. In the VAR context, Granger-
causality generalizes to the multivariate case. Sims (1980) advocated VARs as a
reaction to the manner in which the Cowles Commission program, which identified
structural models through a priori theory, had been implemented. From a causal
perspective, it was closely related to Granger’s analysis. Starting with VAR such as
equations (3.6.1) and (3.6).2, Sims wished to work out how various “shocks” would
affect the variables of the system. This is complicated by the fact that the error terms
in (3.6.1) and (3.6.2), which might be taken to represent the shocks, are not in general
independent, so that a shock to one is a shock to both, depending on how correlated
they are. Sims’s initial solution was to impose an arbitrary orthogonalization of the
shocks (a Choleski decomposition). This amounts to imposing a recursive order on X
and Y, such that the covariance matrix of the error terms is diagonal (i.e., €y and €z
are uncorrelated). A shock to X can then be represented by a realization of €y and a
shock to Y by a realization of &y. Initially, Sims treated the choice of recursive order
as a matter of indifference. Criticizing the VAR program from the point of view of
structural models, Leamer (1985) (in Causality in Economics and Econometrics), and
Cooley and LeRoy (1985) pointed out that the substantive results (e.g., impulse
response functions and innovation accounts) depend on which recursive order is

chosen.

A simple physical example makes it clear what is happening. Suppose that X

measures the direction of the rudder on a ship and Y the direction of the ship. The
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ship is pummelled by heavy seas. If the helmsman is able to steer on a straight course,
effectively moving the rudder to exactly cancel the shocks from the waves, the
direction of the rudder (in ignorance of the true values of the shocks) will not predict
the course of the ship. The rudder would be structurally effective in causing the ship

to turn, but it would not Granger-cause the ship’s course.

Sims (1982, 1986) advocated structural vector Autoregressions (SVARs). SVARSs can
be identified through the contemporaneous causal order only. Ironically, since the
initial impulse behind the VAR program was to avoid theoretically tenuous
identifying assumptions, the choice of restrictions on contemporaneous variables used
to transform the VAR into the SVAR are typically only weakly supported by
economic theory. Nevertheless, the move from the VAR to the SVAR is a move from
an inferential to an a priori approach. It is also a move from a fully non-structural,
process approach to a partially structural approach, since the structure of the
contemporaneous variables, though not of the lagged variables, is fully specified
(Hoover, 2006). The present study hinges on the Toda — Yamamoto version of the
Granger causality which makes use of the usual unstructured VAR as opposed to

Sim’s SVAR.
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