Chapter Three

MODELS, METHODOLOGY AND
DATA

This chapter deals with the methodology adopted for the present study. The analytical
foundations of measurement of economic efficiency, formulation of the stochastic production
frontier and collection of primary data are articulated in detail. The analytical microeconomic
foundations of measurement of technical efficiency are explained in the first sub-section, that
1s, section 3.1. Concepts of production frontier, input and output based measures of technical
efficiency are elaborated in this section using standard microeconomic tools. Some
elementary real analysis is used following graduate level standard microeconomic texts. The
second subsection, that is, section 3.2 is dedicated to the concept of the stochastic production
frontier and its conceptual development since its inception in 1977. The next four sections,
that is, sections 3.3, 3.4, 3.5 and 3.6 are devoted respectively to the specific econometric
strategy adopted in the study. The subsection 3.7 deals with the estimation of Cobb-Douglas
Cost Frontier used to estimate firm level cost efficiency. Section 3.8 deals with the
methodological issues relating to the measurement of Total Factor Productivity Growth
(TFPG) which is further subdivided into two subsections, that is, 3.8.1 and 3.8.2. The first
subsection discusses the parametric approach of measuring TFPG whereas the second
subsection is related to the non-parametric approach. Finally, the nature and sources of data

along with collection are narrated in section 3.9.
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3.1. Analytical Foundations of Measurement of Economic Efficiency

Prior to describing the econometric strategy adopted to measure firm level economic
efficiency or inefficiency it is essential to present the conceptual (microeconomic) framework
of economic efficiency. We begin with the physical structure of different production

technologies with the help of graphical analysis. A production technology that transferring
inputs x=(x,,x,,....,x,)eRY ={x:xeRY ,x>0} into output y=(y,,y,,...,¥,) €R” can
be represented by the output correspondence L or the graph of the technology GR. The output
correspondence P: R 52k [2R*N ={A:AcR"}] (4 is a subset of the Euclidian space of
dimension M) maps input xeR" into subset P(x)c R of output. The set P(x) is called

output set and it denotes the collection of all output vectors yeR" that are obtainable from

the input vector xeR" (Neogi, 2004). The input correspondence L :R —2% maps the
p + g p P + p

output yeR" into subset L(y)c R of inputs.
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Figure 3.1.1 Figure 3.1.2
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The input set L(y) denotes the collection of all input vectors xe R that yields at least output
vector ye R . The input and output correspondence can be derived from one another by

means of the relationships L(y) ={x:yeP(x)}and P(x)={y:xeL(y)}.

Now the graph of the production technology is the collection of all feasible input-output

vectors, 1.e.

GR={(x,y)eR"" : yeP(x),xeR" }and

GR={(x,y)eR"™ : xelL(y),yeR" }.

Thus the input-output correspondence can be derived from the graphs above (figure 3.1.1 and

3.1.2) as, P(x)={y:(x,y) eGR}and

L(y) =i{x: (x,y) €GR}.

Figure 3.1.3 models both inputs and output substitution in addition to modelling input-output
transformation. The input set, the output set and the graph represents the technology in terms

of input quantities and output quantities.

Let us introduce the concept of production frontier as a functional characteristic of the
boundary of the graph of the production technology. The boundary of the graph represents
the maximum possible output obtained from a given level of input or minimum input use for a
given level of output. In a single output-multiple input case the production frontier can be
defined as

f(x) =max {y:yeP(x)}
=max {y:xeL(y)}
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In figure 3.1.4 the production function f{x) describes the maximum output that can be obtained
with any given input vector. The different combinations of mputs and outputs fall on or
below the production frontier. The basic idea of efficiency is to measure the distance of a
particular combination of input and output of a production unit from the respective production

frontier (Neogi, 2004).
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There are two concepts of a distance function. The input distance function measures the
maximum possible conservation of input to reach the boundary of production frontier. The

concept can be illustrated in Figure 3.1.5 [(a) and (b)].
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Figure 3.1.5 (a)
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Figure 3.1.5 (b)
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An input distance function can be defined as D, (y,x)=max {1:x/A€L(y)} where A1is the

contraction factor by which mputs can be reduced to produce output y. Figure 3.1.5 1s the

graphical representation of the input distance function.

An output distance function can be defined as D, (y,x)=min {z :y/u € P(x)} where x is the
output expanding factor i.e., the proportion in which output can be maximized (with z < 1)

with a given level of input. A graphical representation of the output distance function is given

in figure 3.1.6 [(a) and (b)].

Y Y2
A A
P(x) A
y P(x)
y
0 X 0 Y
Input = 1; Output = 1 Output =2
Figure 3.1.6 (a) Figure 3.1.6 (b)

Efficiency measurement is based on the estimates of the best practice frontier production
function which is a natural reference or basis of efficiency measure. Efficiency may be of

three types: (i) technical, (i1) economic and (iii) scale.

Efficiency measure provides a description of the structure of an industry and is hence a very
important step for identifying the causes of inefficiencies. Figure 3.1.7 (a) describes the
concept of feasible production set which is the set of all input-output combinations which are
feasible. The set consists of all points between the production frontier and the X- axis. The

points along the production frontier line OP define the efficient subset of the feasible
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production set. If the firm operating at point A moves to point B, the firm can achieve output
augmenting efficiency. Similarly if the firm moves from point A to point C, it will be
technically efficient from the input saving perspective (measure). Point D in figure 3.1.7 (a)
gives the technically optimal scale where output per unit of input is maximised. Figure 3.1.7

(b) represents the corresponding points of figure 3.1.7 (a) in an isoquant frame.

Now the output based measure of technical efficiency E; is computed by comparing an
observed point of input requirement to produce output Y. with the input requirement on the
frontier production function corresponding to that level of output. In the input coefficient
space this means comparing an observed input coefficient point with the point on the
transformed isoquant of the frontier function corresponding to the observed output with

observed factor proportions.

In figure 3.1.7 (b) this can be stated as E| =%. Another measure E> is obtained by

comparing an observed point of input requirements for an observed output Y. with the output
Yy, obtained on the frontier production function at the same level of input. In 3.1.7 (b) this can

be represented by the ratio £, :% i
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Figure 3.1.7 (a) Figure 3.1.7 (b)

We now define the efficiencies in terms of distance functions. We consider the case of
multiple inputs and single output. The input oriented measure of technical efficiency is given

by the function 7E, (y,x) =min {4:y< f(Ax)}and the output oriented technical efficiency is
measured as TE, (y,x) =max {g:yu < f(Ax)}. Now the input oriented technical efficiency

can be described as a measure of maximum radial contraction in X that enables to produce Y
and A< 1. Output oriented technical efficiency is the maximum radial expansion in Y for a

given set of input X.

We must now introduce costs and input prices in measuring firm level efficiency. When input
prices are introduced in explaining production technology it will be possible to measure the
efficiency of units in terms of costs and allocation of inputs. A cost frontier is defined as the

locus of minimum possible costs to produce a given level of output. A cost function is

defined as C (y,w) =min {W: x e L(y)}, where W=Zw,. X, ; w, is the price of inputs.
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The measure of cost efficiency is defined as C E (y, x,w) = C(y,w)/W . In other words it is

the ratio of minimum possible costs to actual costs. In other words it is the ratio of minimum

possible costs to actual costs (Neogi, 2004).

X2

A

v

Figure 3.1.8

Let 4 be a set of inputs required to produce a given level of output as indicated by the
isoquant / 1. At point 4 the firm is neither technically efficient nor cost efficient. If the firm
can move down to a point along the ray through the origin where it cuts the iso-cost line, the

intersecting point will be cost efficient.

We define cost efficiency CE as the ratio of minimum costs of production with given input

prices to observed cost. From figure 3.1.8 we can write CE =%. However all cost efficient

points may not lie on the isoquant. That is, all cost efficient points are not technically
efficient. For example, input combination at C in figure 3.1.8 is cost efficient but not
technically efficient. On the other hand point B is technically efficient but not cost efficient.
Allocative efficient point is a point which gives both technical and cost efficient combination
of inputs. Point D in figure 3.1.8 is a point where the firm is technically efficient as well as

cost efficient. Hence the point where allocative efficiency is attained must be a point of
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tangency between the iso-cost line and the isoquant. The measure of allocative efficiency is

defined as AE(y, x,w)=CE (y,x,w)/T E(y,x)

The measure of input allocative efficiency is given by the ratio of cost efficiency to mput

oriented technical efficiency.

3.2. Formulation of the Stochastic Production Frontier

To begin with we assume that cross-sectional data on the quantities of m inputs used to

produce a single output are available for each of N firms or producers in an industry.

A production frontier model can be written as
Yi :f(xi;ﬂ)-TEi: (3.2.1)

Where y, is the scalar of output of the i firm, i = 1, 2... N, x; is a vector of m inputs used by
firm i, f (x,; B) is the production frontier, and f is a vector of technology parameters to be

estimated. TE, is the output oriented measure of technical efficiency of firm i. From the

definition of technical efficiency developed in section 3.2.1, we can write

TE, = ﬁ (3.2.2)
X,

which defines technical efficiency as the ratio of observed output to maximum feasible output.

v, achieves its maximum feasible value of f (x,;/)if and only if 7E,=1. Otherwise TE, <

1 provides a measure of the shortfall of observed output from maximum feasible output. In

equation (3.2.1) the production frontier f (x,;/)is a deterministic frontier. Consequently, in

equation (3.2.2) the entire shortfall of observed output y, from maximum feasible output

S (x,;B)is attributed to technical inefficiency. Such a formulation disregards the fact that
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output can be affected by random shocks that are beyond the control of firms. To incorporate
firm specific random shocks into the analysis requires the specification of a stochastic

production frontier. To do so we rewrite equation (3.2.1) as
v =f(x;;B). expiv, }.TE,, (3.2.3)

Where, f(x,;f).exp{v,} is the stochastic production frontier. The stochastic production
frontier consists of two parts: a deterministic part f (x,;/)common to all producers and a

producer specific part exp{v,} which captures the effect of random shocks on each producer.

Hence in case of a stochastic production frontier equation (3.2.2) becomes

TE, = Yi ’
S (x;;B).exp v}

(3.2.4)

which defines technical efficiency as the ratio of observed output to maximum feasible output

in an environment characterized by exp{v,}. Now y, achieves its maximum possible value of

f(x;;B).exp{v,} if and only if TE,=1. Otherwise TE, < 1 provides a measure of the
shortfall of observed output from maximum feasible output in an environment characterized
byexp{v,}, which is allowed to vary across producers. Technical efficiency may be estimated
using either the deterministic production frontier or the stochastic production frontier models
as given in equations (3.2.1) and (3.2.3). In this study we prefer to use the stochastic
production frontier model because the deterministic frontier ignores the effect of random
shocks on the production process. The deterministic frontier runs the risk of improperly

attributing unmodeled environmental variation to variation in technical efficiency

(Kumbhakar, 2000).
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3.3 The Basic Cross-Sectional Model and Method of Estimation

Aigner, Lovell and Schmidt (1977) (ALS) and Meeusen and van den Broeck (MB) (1977)
simultaneously introduced the stochastic production frontier models. These models allow for
technical inefficiency and also acknowledge the fact that random shocks outside the control of
producers can affect output. The biggest advantage of the stochastic production is that the
impact on output of shocks due to variation in labour and machinery performance, vagaries of
the weather, and plain luck can in principle be separated from the contribution of variation in

technical efficiency.

We assume that f(x,;/) takes the log-linear Cobb-Douglas form so that the stochastic

production frontier can be written as

lnyi=ﬂ0+2ﬂjlnxﬁ+vi—ui, (3.3.1)
j

Where, v; is a two sided random statistical noise component and u; is a non-negative (u; > 0)

technical inefficiency component of the error term. Since the error term in (3.3.1) has two
components, the stochastic frontier model is often referred to as a composed error model. The
noise component v; is assumed to be independently and identically distributed (iid), is

symmetric and is distributed independently of the one sided technical inefficiency component
u;. Thus the error term in (3.3.1) &, =v, —u,1s asymmetric since u; > 0. Assuming that v; and
ware distributed independently of x;, estimation of (3.3.1) by OLS provides consistent
estimates of f;s, but not of B, since £(&,)=—E(u,) <0. Moreover OLS does not provide

producer specific technical efficiency.

However OLS provides a simple test for the presence of technical inefficiency in the given

data. If u; = 0, theng, = v,, the error term is symmetric and the data do not support the
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presence of technical mefficiency. However if u> 0, then ¢, =v, —u, 1s negatively skewed and

there is evidence of technical inefficiency in the data. This implies that a test of the presence

of mefficiency in the data can be directly based on the OLS residuals. Schmidt and Lin

(1984) proposed the test statistic b’ = ———, where m,and m, are the second and third

2

sample moments of the OLS residuals. Since v; 1s symmetrically distributed, m, is the third
sample moment of u;. Thus m; < 0 implies that the OLS residuals are negatively skewed and

1t suggests the presence of technical mefficiency. m,> 0 implies that the OLS residuals are
positively skewed which is meaningless in this context. Hence positive skewness of OLS
residuals indicates that the model is misspecified. Since the distribution of 4> is not
extensively published, Coelli (1995) proposed an alternative test statistic that is

asymptotically distributed as N (0,1). Negative skewness of OLS residuals occurs when m;, <

0, a test of hypothesis that m;> 0 is appropriate. Under the null hypothesis of zero skewness

my

of errors in equation (3.3.1), the test statistic ————=——
quation (3.3.1) 6m I N)?

is asymptotically distributed as

N(0,1). The advantage of this test is that it is based on OLS residuals. The disadvantage is

that it is based on asymptotic theory and especially in large scale manufacturing number of
firms are small in a cross section. We shall consider hypothesis tests of the absence of
technical inefficiency based on maximum likelihood estimators. In all the estimations
presented in Chapter 4 we have routinely presented the value of the third central moment of

OLS residuals.

In order to estimate the model in (3.3.1) ALS (1977) made specific distributional assumptions
regarding the individual components of the composed error term ¢, . In particular the

following assumptions are made.
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(i) v, ~iid N(,c5})

(i) u, ~iid N*(0,0]), that is u; is non-negative and distributed as half normal,

(i) v; and u; are distributed independently of each other and of the regressors.

Assumption (1) is conventional and is maintained throughout our analysis. Assumption (i1) 1s
based on the proposition that the modal value of the technical inefficiency term is zero. It is
over simplistic and the distribution of the sum of v and u, under the distributional assumptions
in (1) and (i) are easy to derive. The second part of assumption (iii) is a bit problematic as
because if producers know something about their technical efficiency it can influence their

choice of inputs. The density functions of v and u respectively are:

1 3 v
f(V)—mav-eXp{ 203} (3.3.2)
and  f(u)= éa .exp{—zuo_z} (3.3.3)

with u; > 0, i.e. it is non-negative half normal. Given the independence assumption,
the joint density function of v and u is the product of their individual density functions and

hence

f(u,v):#.exp{ u” Vz}. (3.3.4)
2ro, o,

20 20!
Since ¢; =v, —u,, the joint density function of u and ¢ 1s

2

f(u,5)=#.eXp{ - —(€+u)2} (3.3.5)
2ro, 0,

- 2 2
20, 20,

The marginal density function of ¢ is obtained by integrating u out of f (1, ¢) , which gives
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2 33.6
f(©)=] fu,e)du 5

e [T

where

(T=(O'3 +crf)”2

A=0,/0,and¢(.) and®(.) are the standard normal density and cumulative
distribution functions respectively. The reparameterisation from o and o to o and 4 is
convenient as because A provides an indication of the relative contribution of # and v in¢ .
As 2 —0 eithero -+ or o] —0, and the symmetric error component dominates over
the one sided error component in the determination ofe . As A —>o either o, —+ or
o2 —0 and the one sided error component dominated over the symmetric error component in
determination ofe . In the first case we have the OLS production function model with no
technical inefficiency, whereas in the second case we are back to a deterministic production

frontier model with no noise.

The ALS (1977) stochastic production frontier model with normal-half normal composed

error distribution contains basically two parameters, o, and o, orelse o andZ .

The distribution parameters o and 4 are to be estimated along with the technological
parameters £ . But before that we must test the hypothesis that A =0, where the test is based
on the maximum likelihood estimate of 4 . A likelihood ratio test may be conducted to test
the hypothesis that A =0but since the hypothesized value of 1 lies on the boundary of the

parameter space, it is difficult to interpret the test statistic. However Coelli (1995) has shown
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that in this case the appropriate one sided likelihood ratio test statistic is asymptotically
distributed as a mixture of y* distributions rather than as a single y° distribution. The

critical values of such a test are obtained in table Kodde and Palm (1986,). If the null
hypothesis is true then the production function is equivalent to the traditional OLS average

production function where firms are assumed to be fully technically efficient.

The marginal density function f(g)is asymmetrically distributed with mean and variance
2 T — 2 2 2 .

E(e)=—E(u)=-0,,]—andV(e)=——.0, +0o,. ALS suggested [1 — E(u)] as an estimator
T T

of mean technical efficiency. But Lee and Tyler (1978) proposed

E(exp{-u})=2[1-®(o, )].exp{dzu } (3.3.7)

which is preferred to [1 — E(u)] since [1 — u] includes only the first term in the power series

expansion of exp{-u}. Also unlike [1 — E(u)], E (exp{—u}) is consistent with the definition of

technical efficiency.

Using the marginal density function f (&) from (3.3.6) the log likelihood function for a

sample of N firms in an industry is

lnL=(constant)—Nlno”rZ]nd)(—ﬂ]— ! Zg.z (3.3.8)

c ) 205"

The log likelihood function in equation (3.3.8) can be maximized with respect to the
parameters to obtain maximum likelihood estimates of all parameters of the model. These

estimates are consistent as N —>+ oo .
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Battese and Corra (1977) parameterization is more convenient from the estimation point of
view. Letting y=0. /0’ we see that y€[0,1]. The log likelihood function with this

reparameterisation is

lan—%(InZﬁJr]naz)+Zln(1)(—zi)—21228,-2 (3-3.9)
i o

The next step is to estimate technical efficiency of each producer. We have estimates of
&,=v,—u,, which contain information on u;. The task is to extract the information that ¢,
contains on u;. A solution to the problem is obtained from the conditional distribution of u;
given ¢; , which contains whatever information ¢, has concerning u;. Jondrow, Lovell,

Materov and Schmidt (1982) showed that if u, ~ N*(0,o5.), the conditional distribution of

u given &, 18

_f(u,¢)
JED="
o exp{—(”z_i;)} (3.3.10)
L2ro. {1—@(— u”
O«

where u.=—so’/c’and ol=c’c’/c”. Since f(u/e)is distributed as N* (w.,07),
either the mean or the mode of this distribution can serve as point estimator of #. The mean is

given by
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- *-/ *
E(ul./gi):,u*i+0'{ pCu o }

1-® (., /0.)
s (e, A/ 0o) _(aﬂ}
- 1-® (g, A/ 0) o

Once point estimates of u; are obtained, estimates of firm specific technical efficiency can be

(3.3.11)

computed from

TE, =exp {-u,} (3.3.12)

Where, #,1s E(u,/&,). Battese and Coelli (1988) proposed the alternative point estimator for

TE . as,

1-D (o, — .,/ 04)
l_q)(_ﬂ*i /O-*)

TE =E(exp{—u,}/¢,) ={ :l.exp {—,u*l. +%.Gf} (3.3.13)

The point estimators in (3.3.12) and (3.3.13) can give different results since the two formulae
are unidentical. We use the later in the present study. But it is to be noted that regardless of

which estimator is used the estimates of technical efficiency are inconsistent simply because
the variation associated with the distribution of (u, / &,)is independent of i. However this is

the best estimation strategy with cross sectional data.
3.4 The Normal-Truncated Normal Model

The normal-half normal model may be generalized by allowing u to follow a truncated

normal distribution. This model was introduced by Stevenson (1980). The distributional

assumption on v remains the same. Only the assumption on u is changed as u, ~

iid N* (1,0 . The third assumption of the ALS model is also maintained. The truncated

normal distribution assumed for u generalizes the one parameter half normal distribution by
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allowing the normal distribution which is truncated below at zero to have a non-zero mode.
Thus this model contains an additional parameter x to be estimated and hence provides a
somewhat more flexible representation of the pattern of inefficiency in the data. The

truncated normal density function for # > 0 is given by

_ 1 (-’
f(u)—\/ﬁauq)(_#/g).exp{ 207 } (3.4.1)

Here y 1s the mode of the normal distribution which is truncated below at zero. If =0, then
the density function collapses to the half normal density function. x may be of either sign.
The estimation strategy is the same as in ALS model but with minor changes in the
parameterization. The log likelihood function for a sample of N firms is

In L= (constant)— Nlno —Nh @(—ij
o

u

+2hn q{ﬁ—ﬂ}%zvﬁﬂf

o

(3.4.2)

1/2

where o, =10/ 1+ 1>, o=(c. +0’)"?and A=c, /o, . This log likelihood function can be

maximized to obtain maximum likelihood estimators of all parameters in the model. It can be
shown that the conditional distribution f(u/&) is distributed as N*(i,,0.) where
i =(-0. & +uc’)/c’and o7 =0, o) /c’. Thus either the mean or the mode of f (u/¢)

may be used to estimate the technical efficiency of each firm. The mean of the conditional

distribution of u is given by

B le,) =o.| Py PULIO) (3.4.3)
o. 1-®(u /o)

Point estimates of technical efficiency of each firm can be obtained by means of
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TE,-=E(exp{—u,~}/e,~){1_@[“_@"/“)}. { :

expl—fi +L o2t (3.44
—D(—g, Joy |2 26}( )

This produces unbiased but inconsistent estimates of technical efficiency (Kumbhakar and

Lovell, 2000).
3.5 Panel Data Models with Time Invariant Technical Efficiency

Maximum likelihood estimation of a stochastic frontier production function model for panel
data with time invariant technical efficiency is structurally similar to that applied to cross
sectional data. We assume 7 time period observations on each of the N firms of our cross-
section. Our production function model is of log linear Cobb-Douglas form as assumed in

section 3.3.1 with the time subscripts attached appropriately.

hyit:ﬂ0+2ﬂjtmxjit+viz_ui’ (3.5.1)
J

We start by making the following distributional assumptions on the error components of the

stochastic production frontier model as given in equation (3.5.1).

(iv) v, ~iid N(0,5)

it
(v) u, ~iid N*(0,5.), that is u; is non-negative and distributed as half normal,
(vi) vi and u; are distributed independently of each other and of the regressors.

These distributional assumptions are quite similar to those of the ALS model based on cross-

sectional data. Now the noise term varies across firms as well as over time.

Pitt and Lee (1981) used these assumptions to estimate technical efficiency using panel data.

The density function of v = (v, v,,...,v;)", which is now time dependent is given by the

following generalization of equation (3.5.2), where the firm subscripts are suppressed:
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S)= exp {— ;;;} (3.5.2)

Given the independence assumption, the joint density function of u and v is

exp{ v’ ”"’} (3.5.3)

T H 2 5 2
20, 20,

1
(272_)1/20T )

v

S w,v)=

(T+2)/2 T"
)" o, o

v

And the joint density function of u ande =(v, —u,v, —u,....,v, —u)'1s

2 w—p)* e w’
u,g)= LEXp < — - + == 354
S (.e) en)"M e o xp{ 20! 207 20} ( )
where
_ To,e
He ol +To!
2 0,0,
ol +To!

Thus the marginal density function of ¢ is obtained by integrating u out of f (u, &), which

gives

[(@)=] fu,)du
’ (3.5.5)

= T2 141, 2 2812 " 2 2
2r) "o, (o, +To,) o 20,

v

N-(plo)] {_ 28_5 N uf}

The log likelihood function for a sample of N firms each observed over 7 time periods, is
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NT-D, . N

In L=(constant)— . —?111(03+T05)

Zgl.'gi { 2
+Z]n{1—d{ﬂ*"ﬂ— izo_z +EZ(%J

(3.5.6)

0*

This log likelihood function can be maximised with respect to the parameters to obtain the

maximum likelihood estimates of 8,5, and o’ .

The next step is to obtain estimates of firm specific time invariant technical efficiency. The

conditional distribution of (u#/¢) is

f(u/g):—f;‘("‘j)
¢ (3.5.7)

B I _w-p)t
0o, [l-D(—u, /o.)] ’eXp{ 207 }

This is the density function of a variable distributed as N*(z,,57). Either the mean or mode
of this distribution can be used as a point estimator of technical efficiency. The mean is given

by

#(—p.. /0. } (3.5.8)

E(u. /e)=u. + o.
(u; /€)=, GL—CD(M,-/G*)

These estimates of u; are consistent as7 —oo. The values obtained from (3.5.7) can be
substituted into TE, =exp {—1,} to obtain firm specific estimates of time —invariant technical

efficiency. An alternative estimator is provided by the minimum squared error predictor

1-® (0. —p.,/0.) 1,
Blew (-} 6) =| oS .exp{—y*[Jr—.O'*} (3.5.9)
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Pitt and Lee (1981) model shows the use of maximum likelihood techniques to obtain

estimates of producer specific time invariant technical efficiency.

In case of panel data, the normal-truncated normal model was proposed by Kumbhakar (1987)
and Battese and Coelli (1988). The log likelihood function for the normal —truncated normal

model is given by

MLz(constant)—wm o! —%ln (o} +T0'3)—N]n{1—d) A

i Zsi’gi N : i 2
_ ot (b D v i 2 i
+Zln{l (D(O'*J:| 20 2 [O‘ ) +2Z[G*J

v u

(3.5.10)

2 = 2
uo, —Teo,
2
u

where 77, = , o.and £ are defined as before. [ =x if 4 = 0. The log

o’ -To
likelihood function can be maximized with respect to the parameters to obtain maximum

likelihood estimates of all parameters. The conditional distribution (#/¢) is given by

f(u/a)z—f(b(l";)
Je (3.5.11)

S _exp{_w}
1) 2o, [1-(—fil o)) 25

which is distributed as N*(zZ,c). Either the mean or the mode of the distribution can serve

as a point estimate of firm specific technical efficiency. These are given by

(3.5.12)

E(ui/gi)zﬁﬁra{m}

Producer specific estimates can be computed by using the minimum squared error predictor

1-®(o.—u,/0o.)
l_q)(_ﬁi /G*)

E(exp {—u,.}/g,.)z[ }.exp{—ﬁi +%.53} (3.5.13)
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These point estimates can be inserted into 7E, =exp {—,} to obtain firm specific estimates of

time-invariant technical efficiency.
3.6 Panel Data Model with Time Varying Technical Efficiency

A stochastic production frontier model for panel data with time varying technical efficiency

may be written as

lnyizzﬂo"'Zﬁjtlnxjn_"viz_uiw (3.6.1)
J

If the statistical independence assumption of the error components u and v are valid it is
possible to use maximum likelihood technique to estimate the time-varying technical

efficiency model. For an unbalanced panel data Battese and Coelli (1992) assumed that,
(i) v, ~iid N(0,c?) ,
(i) u,=B0).1,,
(i1) S(t)=exp{-n(t—T)}, and
(iv) u, ~iid N*(u,o.) ie., ufollows a truncated normal distribution.

The function S(¢) satisfies the properties: (a) A(¢), (b) S(¢) decreases at an increasing rate if
n > 0, increases at an increasing rate if 7 < 0, or remains constant if = (0. Battese and
Coelli (1992) used maximum likelihood estimation method to find estimates of all parameters

of the model. Based on the distributional assumptions they showed that u,/&, ~

iid N* (i, 02), where & =v, —B.u, or &,=n y, - f3, —Zﬂj In x ; with
J
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If technical efficiency is time invariant then » = 0, which implies £(¢)=1 and S'S=T so that

the expressions for (.., and o, collapse to their time invariant versions given below equation

(3.5.4).

However for the purpose of estimation the Battese and Corra (1977) parameterization is very

useful. They suggested the parameterization of the likelihood function in terms of

o’ =cl+o.and y =c. (o, +c.). This is done with the calculation of the maximum

likelihood estimates in mind. The parameter, y, must lie between 0 and 1 and thus this range
can be searched to provide a good starting value for use in an iterative maximization process
such as the Davidson-Fletcher-Powell (DFP) algorithm. The log likelihood function, in terms
of this parameterization, is given in Battese and Coelli (1992). The minimum mean squared

error predictor is given by

E(exp {(~u,}/¢,) =E@Exp{ f(0)u,} &,)

| 1= (B(t)o. — . /OL)
B 1-O(-p, /0.)

(3.6.2)

1
}.exp {—ﬂ(zm,— PO’ af}
For testing of several restrictive forms the Battese and Coelli (1992) model is extremely
helpful. We present a list of models nested in the Battese and Coelli (1992) model as follows:
Model I: Battese and Coelli (1992) model with balanced panel data (used in our study).

Model II: Setting y =0gives the traditional OLS average production function model where

firms are assumed to be fully technically efficient.
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Model III: Setting 7 =0 and restricting the formulation to a full (balanced) panel of data gives

the time-invariant model set out in Battese and Coelli (1988) or Kumbhakar (1987).

Model IV: The additional restriction (over model III) of x equal to zero reduces the model to

the normal-half normal model in Pitt and Lee (1981).

Model IV: Adding another restriction of T=1 to returns to the original cross-sectional, normal

half-normal formulation of Aigner, Lovell and Schmidt (1977).

Model V: All these restrictions excepting z= 0, gives the cross sectional normal truncated

normal model suggested by Stevenson (1980).

The null hypothesis of no technical inefficiency (Model II) can be tested by applying
the Likelihood Ratio Test. The likelithood ratio test is based on the likelithood ratio statistic

(LR) defined as,
LR = -2In[L(Hy) / L(H4)],

Where, L(Hy) and L(H4) are the values of the likelihood function (optimum) under the null
and alternative hypotheses respectively. The LR statistic is approximately distributed as a
mixed y? distribution as because = 0 is a value on the boundary of the parameter space of y

(Coelli, 1995). Analogously other tests of restrictions or set of restrictions of the full

stochastic frontier model may be conducted using the usual likelihood ratio test (the y” test).

3.7 Cobb-Douglas Cost Function

In order to estimate Cobb-Douglas cost function a few simplifying assumptions are made.
Admittedly credible information on price of land is difficult to obtain and ascertain. This is
especially true for land meant for tea plantations. Thus if the factor land (or alternatively area

under cultivation) is eliminated from a Cobb-Douglas production function, it would
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consequently be eliminated from the Cobb-Douglas cost function simply because it is derived
from the Cobb-Douglas production function. Thus, for the present analysis the production
function is taken in per hectare form, so that the variable factor land or cultivated area is
eliminated from the inputs. Hence, the study considers all the other factors in per hectare
form, namely, wage cost per hectare, irrigation cost per hectare, and pesticides-fertilizer cost
per hectare. So, expressing the Cobb-Douglas production function with three endogenous

inputs in per hectare form, the corresponding Cobb-Douglas cost function may be written as,

o s

Lo
C=uOQ"w i -p"- (3.7.1)

Herew, i and p are real prices of labour per hectare, irrigation per hectare and pesticides and
fertilizers per hectare respectively, u is a constant and C is obviously total cost of plantation or
cultivation expressed in per hectare form. Q is clearly output per hectare. Economic
interpretation of the partial output elasticity parameters of the Cobb-Douglas production
function is important. ais the partial elasticity of output per hectare with respect to labour use
per hectare. Similar explanations in case of irrigation, pesticides and fertilisers may be

provided for the elasticity parameters o, and a3 respectively.

The original production function parameters are called the structural form parameters. They
are the time varying technological coefficient 4(z), and the exponents of the inputs expressed
in per hectare form. On the other hand, the parameters of the Cobb-Douglas cost functiong,

1/, ai/v, a2/v and o3/v are actually reduced form parameters where a4 + a; + a3 = v.

It is observed that the number of reduced form parameters is greater than the number
structural form parameters and thus the model is over identified. This is usually true for any
Cobb-Douglas cost function which is derived from the production function using the
conditional factor demand functions found from the first order conditions of cost minimisation

(subject to output constraint). Nerlove (1963) devised a method of imposing parameter
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restrictions in such a way that the number of structural form parameters are exactly equal to
the number of reduced form parameters. Following Nerlove, the following restrictions on the

parameters are imposed.
Ifa; +a,+az=v, ay=v-a,-a;, e (3.7.2)
Replacing equation3.7.2 in equation3.7.1, we get

VO, O (o4} s

C=uOw 5T p™

<=

which yields

Finally, taking log on both sides we have

log{c’}: logy+llogQ‘+a210g£l"J+a310g B
W, v bV w) Vv W,

or log [GIZ 103#*‘%108 [li]"'a}k)g . +l log Q
W, v W, v Wi v l
or log[g =Q+llogQV+u.
W, v o=
i/ o (3.7.3)

The study makes an over simplistic assumption that relative price of mnputs in tea plantations
stay more or less unchanged in the medium to long run. In other words the ratios i/w, and p/w
are assumed to be constant over the ten year period 2001-10. Hence the sum of the first three
terms on the right hand side of log-linear expression above may be assumed to be a pure

constant Q.

Conceptually price of irrigation is difficult to imagine and measure. However wage rate is
measureable but difficult to estimate at the garden level due to several reasons. First, most

gardens do not disclose the exact number of permanent and casual workers. Permanent staffs
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are paid a much higher wage rate compared to the casual staff. For most gardens the ratio of
casual to permanent workers is around 70 is to 30. This figure may of course vary slightly
across gardens. Thus a weighted average wage rate calculation depends exactly on the ratio or

proportion which is unknown on most occasions.

Second casual workers clearly disclose that they do not receive the wage rate according to the
balance sheet declared rate. They rather receive around 50 per cent of the balance sheet
declared wage rate. This further complicates the computation or estimation of an average
wage rate at the garden level on an annual basis over the study period. The most important
issue with regard to estimation however is that the true proportion of casual workers is never
disclosed. The present study bypasses these controversial methodological issues and assumes
that workers are paid on an average, the company declared wage rate as recorded in their

annual balance sheets. More over the relative factor price ratios i/w, and p/w are constant.
3.8 Cross-Sectional Cost Frontier Model

A cost frontier can be treated as a single-equation model, just as a production frontier. In this
case 1t is possible to obtain estimates of the parameters describing the structure of the cost
frontier, as well as producer-specific estimates of cost efficiency simultaneously. However, if
input quantity data or input cost share data are available and if Shephard’s lemma is applied, a
cost frontier can be treated under a simultaneous-equation framework. It is also possible to
obtain producer-specific estimates of the magnitude and cost of technical efficiency and the
magnitude and cost of input allocative efficiency. However, moving from a single-equation
model to a simultaneous-equation model requires more data and involves a more complicated
estimation system, but it offers the possibility of gaining more insight into the nature of cost
efficiency. Despite its obvious limitations the single equation cost frontier model is employed

in the present study in order to estimate firm specific cost efficiency as well as the maximum
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likelihood estimates of parameters of the cost frontier. The single-equation cost frontier model

is presented in Section 3.8.1.
3.8.1 Single-Equation Cost Frontier Models

To start with it is assumed that cross-sectional data on the prices of inputs employed, the
quantities of outputs produced, and total expenditure are available for each of i producers. The

analysis is based on a cost frontier, which can be expressed as
E;=cly,w;B), i=1...0..... (3.8.1.1)

Where E; = wlx; =Y, WXy, is the expenditure incurred by producer i, y; =
1is ----Yui) = 0 s a vector of outputs produced by producer i.  w; = (wy;, ... wy;) > 0is
a vector of input prices faced by producer i, c(y;, w;: B) is the cost frontier common to all
producer, and £ is a vector of technology parameters to be estimated. It is to be noticed that
the mput vector x; used by producer 7 is not necessarily observed. If it is not observed, cost
efficiency cannot be decomposed into the cost of input-oriented technical inefficiency and the

cost of input allocative inefficiency. If it is observed, the decomposition can be achieved.

Cost efficiency of the i producer may be written as,

CE;
i El

e (3.8.1.2)

which defines cost efficiency as the ratio of minimum feasible cost to observed expenditure.
Since E; = c(y;, w;; B), it follows that CE; < 1.CE; = 1if, and only if ,x,,;; = x,;(y;, wi; B)Va
so that E; = ), Wpi X (V;, w;: B)attains its minimum feasible value of c(y;, w;: B). Otherwise

CE; < 1 provides a measure of the ratio of minimum cost to observed expenditure.

In equation 3.8.1.1 the cost frontier c(y;, w;: B) is deterministic, and so in equation 3.8.1.2 the

entire excess of observed expenditure over minimum feasible cost is attributed to cost
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inefficiency. Such a formulation ignores the fact that expenditure may be affected by random

shocks not under the control of producers. A stochastic cost frontier can be written as

Ei=c(y,wi;B)exp{vid.oooviiiiiiii, (3.8.1.3)

where, [c(y;, w;; B).exp{v;}] is the stochastic cost frontier. The stochastic cost frontier
consists of two parts, a deterministic part c(y;, w;; f)that is common to all producers, and a
producer specific random part exp{v;} which captures the effects of random shocks on each
producer. If the cost frontier is specified as being stochastic, the appropriate measure of cost

efficiency becomes

CE, = SQWiB)exploi e (3.8.1.4).

E;

This defines cost efficiency as the ratio of minimum cost attainable in an environment
characterized by exp{v;} to observed expenditure. CE; <1, CE; = 1 if and only if, E; =
c(y;, wi; B).exp.{v;}. OtherwiseCE; < 1 provides a measure of the ratio of the minimum
feasible cost to observed expenditure. The estimation of cost efficiency can be based on either

equation 3.8.1.1 or equation 3.8.1.3.

3.8.2 The single output Cobb-Douglas Cost Frontier

If we assume that the deterministic kernel c(y;, w;; B) of the single output cost frontier takes
the log linear Cobb-Douglas functional form, then the stochastic cost frontier model gives in

equation 3.8.1.3 can be written as

lTlEl' > ,Bo + ,Bv lnyl- + z ﬁnanni + Vi
n

:BO + ﬁv hlyl' + Zﬁﬁo + ﬂv lnyl- + Vi + L (3821)
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Where v; is the two sided random noise component, and u is the nonnegative cost inefticiency
component, of the composed error term &; = v; + u;. Since a cost frontier must be linearly
homogeneous in input prices, c(y;, Aw;; B) = Ac(y;, w;; B), A > 0, and either the parameter
restriction B, = 1 — Y,.x Bnmust be imposed prior to estimation, or equation 3.8.2.1 must be

reformulated as

n[5] = Bo + By Inyi + Tk B b [225] 4 vi b g (3.8.22)

Wki
Using equation 3.8.1.4, a measure of cost efficiency is provided by
CE; =exp{—ui}. ..ccoooeviiiiiiiiiin(3.8.2.3)

In both formulations of the stochastic cost frontier, the error terme; = v; + u; is asymmetric,
being positively skewed since u; = 0. apart from the homogeneity restriction on the S, s and
the direction of the skewness of the error term, the stochastic cost frontier model given by
equation 3.8.2.1 and 3.8.2.2 is structurally indistinguishable from the stochastic production
frontier model given by equation 3.3.1. Thus, apart from some sign changes, the entire
analysis of section 3.2.2is applicable to the estimation of stochastic cost frontier. If maximum
likelihood techniques are employed to obtain estimates of f and the parameters of the two
error components, the same distributional assumptions can be made for the error components
in equation 3.8.2.1or equation 3.8.2.2. It is also possible to use method of moments estimation
techniques to obtain estimates of [ and the parameters of the two error components. In either
case the JLMS decomposition can be used to separate noise from cost inefficiency in the
residuals. The estimated cost inefficiency component can then be substituted in equation

3.8.2.3 to obtain producer-specific estimates of cost efficiency.
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We now illustrate the use of maximum likelihood techniques to estimate the stochastic Cobb-
Douglas cost frontier given in equation 3.8.2.2. We make the following distributional

assumptions:

(i) vi~iid N (0, a2).

(ii) u;~iid N(0, 62).

(1i1) v; and u; are distributed independently of each other, and of the regressors.

The density function of u = 0 is given in equation 3.3.3. The density function of v 1s given in

equation 3.3.2. The marginal density function of € = v + u is

fo) = f fQw €)du
0

=[*—2— exp {—_uz_(e—u)z} du

202 202

-9 (i) @ (ﬂ) ................ (3.8.2.4)

g

Where, 0 = (62 + 02)/?,1 = Z—", and ®(.) and @(.) are the standard normal cumulative

distribution and density functions. As 2 — 0 either 62 - +or 62 — 0, and the symmetric
error component in the determination of &. As 1 — + either 62 — +o or 62 — 0 and the
one sided error component dominates the symmetric error component in the determination of
€. In the former case the stochastic cost frontier model collapses to an OLS cost function
model with no variation in cost efficiency, whereas in the latter case the model collapses to a
deterministic cost frontier model with no noise. As in the estimation of technical efficiency, it

is possible to conduct a likelihood ratio test of the hypothesis that 1 = o.
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The marginal density function f(¢) is asymmetrically distributed, with mean and variance

E(£)=E(u)=au\/§,
s

V(€) =202 402 oo, (3.8.2.5)

Using equation 3.8.2.5, the log likelihood function for a sample of / producers is

InL = constant — I Ino + };In® (%) - in g ..(3.8.2.6)

202 2

The log likelihood function can be maximized with respect to the parameters to obtain

maximum likelihood estimates of all parameters.

The next step is to obtain the estimates of the cost efficiency of each producer. We have
estimates of ¢&; = v; + u;, which obviously contain information of u;. Ife; < 0, chances are
that u; is not large (since E(v;) = 0), which suggest that this producer is relatively cost
mnefficient. The problem is to extract the information that &; contains u;. A solution to the
problem is obtained from the conditional distribution of u; given ¢; , which contains
whatever information ¢; contains concerning u;. Adapting the JLMS (1982) procedure to the

estimation of cost efficiency whenu;~N*(0,02), the conditional distribution of u given ¢ is

f(u,¢)
flule) = 176
— 1 _ (H—M*)Z _ __u*
= ma*.exp{ T IVAER ( = )] ......................... (3.8.2.7)
2.2
Where, p, = €02 / o2 and 2 = 4% /02' Since f(ul¢) is distributed as N*(u,02) either the

mean or the mode of this distribution can serve as a point estimator for u;. given are by
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o=
E(uile; = pui + 0

1- (=50
) A
£ N
=0, [ —Z%+ (=)o .(3.8.2.8
7 [1_45(711) ( o )] ( )
And
& (a—’“z‘) ife=0
M(uilei) = t\g2 L (3829)
0 otherwise,

respectively. Once point estimates of u; are obtained, estimates of the cost efficiency of each
producer can be obtained by substituting either E (u;|&;) or M (u;|g;) into equation 3.8.2.3. It

is also possible to adapt the Battese and Coelli (1988) point estimator

1- (g, -2t

CE; = E(exp{—u;}|g;) = [—"*]_exp {—u*i +%a*2} w.....(3.8.2.10)

-

The present study uses (3.8.2.10) to find point estimates of garden specific estimates of cost
efficiency. The time varying cost efficiency model is not employed. In a nutshell while the
production frontier specifies the error term as (v; — u;) where v is the symmetric random
noise component and u is the one sided inefficiency random variable, the cost frontier simply
specifies the composed error as (v; + u;) with the random variables remaining the same.
This simple substitution changes a production frontier into a cost frontier. The quantity u;now
indicates the extent by which the tea garden operates above the cost frontier. Assuming
allocative efficiency u;is closely related to the cost of technical inefficiency [Coelli, 1996].
However 1f allocative efficiency is not assumed the interpretation of u;1n a cost function is not
very clear and both technical and allocative inefficiencies may be simultaneously involved.
Hence following Coelli (1996) the present study refers efficiencies measured with respect to
the cost frontier as simply cost efficiency. The cost frontier employed in the present study is

similar to the one proposed by Schmidt and Lovell (1979). The log-likelihood function of the

132



cost frontier is the same as that of the production frontier with the exception of a few changes

of signs.

3.9 Measurement of TFPG

The study adopts four different approaches to measure total factor productivity growth in the

tea industry in Assam.

(1) Growth Accounting: The Solow Divisia Index, Tornqvist Divisia Index, and Kendrick

Index are used to measure total factor productivity growth.

(2) Trans-Log Measure of Technical Change: The study estimates Production and Cost

Functions to compute the rate of technical progress and bias with respect to inputs.

(3) Nonparametric Approach: Malmquist TFP Index is used to a non-parametric estimate of

TFPG.

3.9.1 Methodological Issues

Total factor productivity indices themselves fall into two separate categories: (a) Arithmetic
TFP indices [Abramovitz (1956); Kendrick (1961)]; (b) Geometric or Divisia TFP indices
[Solow (1957); Jorgenson and Griliches (1967)] depending upon their definitions of Ii. The
most important widely used variant of arithmetic indices is Kendrick index. Kendrick index
(1961) of TFP is based on a linear production function which assumes infinite elasticity of

substitution between factors of production. The Kendrick index is defined as:

P= 2t (3.9.1.1)

Where, W refers to the reward of the input i in the base year.
In order to compute the Geometric or Divisia indices of total factor productivity, we shall

proceed as follows. Given the production function
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Y=F(X, Xy Xo8) eeeeeiiiinnrennn(3.9.1.2)

Under constant returns to scale, the construction of the divisia or the geometric index of total
factor productivity that belongs to the growth accounting approach for measuring productivity
is based on the following formula
L .
DI = %exp{— ;!Shi %} .................... (3.9.1.3)

Where, Y is output, X’s are inputs, ¢ is time and S# is the share of input in the value of output.
This type of index was used by Abramowitz (1956), Solow (1956), and Jorgenson and
Grilliches (1967) in their empirical studies. The logical foundation of this index was

developed and enriched by Richter (1966), Gorman (1970), Hillinger (1970) and Hulten

(1973).
Based on the production function (3.9.1.2), the total differential is
dY =FdX,+ F,dX, +---+ F,dX, + F,dt
X X
Or’ﬂ :F'l h_{_Fz d 2 +...+Fkﬁ+]7t
dt dt dt dt

1dY_XE LY, KR LA, X1 dX, F,
Yd Y X, d Y X, dt Y X, dt Y

F_1dV |(XE) 1 dX,
oy vda S\ Y X a

Thus, the divisia index is given as

Or,

Y &, X
DI =—-> Sh,—-
y ; Y (3.9.1.4)

omY XF, k

where , Sh, = ~ and ZSh,. =1
o X, Y 7
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The divisia index (3.8.1.4) that shows the rate of technical change is defined as the
difference between the rate of growth of output and the weighted average of rates of growth of
inputs, the weights being the shares of inputs in the value of output. For the economic time
series data, Solow (1957) computed the divisia index by using the formula

;v ) K X X AX, | & AX,  AX
pr, =22 = Sh| -k = ST =28 === Gas)
Y X,) 5 X X Yy X, ) 3 X X )T

Equation (3.9.1.5) gives the Solow residual measure of total factor productivity growth. For

the present study where we have only two inputs, namely, capital (K) and labour (L), Solow

residual for annual time series data, is
AY AL AK AL
D]t :(——T]—(I—ShL)(?__j ................... (3916)

Where, Sh, is the share of labour.

Contrasted with the divisia index Solow used, Tornqvist index is another important
variant of the divisia index. Under the specification of a translog production function under
constant returns to scale, Diewart (1976) proved that the Tornqvist index is the exact measure

of technical change. Thus, if there is a transcendental logarithmic production function as
k k

hY=ay+B+056,+> ahX, +%ZZ,BU. hX,InX, +> B,hX, (3917
i=1 i i=1

The Tornqvist approximation of the divisia index as introduced by Jorgensen and Grilliches

(1967), can be written as

— Y ko X,
DI, =In| —— | =) Shil| — | 3.9.1.8
)3 [X» J 3519

-1 it—1

Where, S_h, =%[Shu +Shi,H]_ The average rate of technical change, DI, , is also called

translog index of technical change.
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It should be noted that the translog measure of the total factor productivity growth is
not significantly different from the Solow residual measure under two conditions. First, the
elasticity of substitution is not significantly different from one. Second, variation in the
growth rates of inputs over time is not significant (see, Ahluwalia 1991).

Using equation (3.8.1.7) and (3.8.1.8), we shall compute the growth of total factor
productivity. Total factor productivity and the rate of technical progress are synonymous.

The discrete time version of Tornqgvist index is presented below.

Al TFP= Al Y (t) =[(sh, (t)+sh, (t=1))/2].Aln L(t)- 30,19
[({1=sh, (t)}+{1—sh, (t=1)})/2].Aln K (¢) (39.19)

The higher the rate of technical progress, the higher will be the growth of output. Hence, the
estimation of the rate of technical progress and its input bias is relevant. Under the
specification of production function as (3.9.1.7), the expression for the rate of technical
progress is given as

omY
ot

=a,+B,1+> B, X, (3.9.1.10)

Where, «, stands for the rate of autonomous growth of total factor productivity, g, for the
bias in the growth of total factor productivity and g, for the rate of change in the growth of
total factor productivity. If §, =0, technical progress is Hicks neutral. If g, >0, technical

progress is non-neutral in the Hicksian sense and is biased with respect to the i-th input.

For empirical estimation, we have used ASI data for Tea processing industries of
Assam for a period of 18 years (1991-2009). Nominal values were deflated by appropriate
wholesale price indices from RBI: Report on Currency and Finance (various issues). The
price indices of machinery and equipment were used to deflate fixed capital stock at current.
We measure labour in terms of number of workers engaged in production.

Admittedly there is no satisfactory or universally accepted way of measuring capital stock.
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Since measurement of true economic depreciation is a very complex exercise we choose to
work with estimates of gross fixed capital stock. In this study, we have computed gross fixed
capital stock at constant prices by using the perpetual inventory accumulation (PIA) method
(Goldsmith, 1951). As regards the gross fixed capital stock at replacement cost for the
benchmark year (1980-81), we have used the rule of thumb after Roychaudhury (1977),
“...doubling the value of fixed capital stock at book value at current prices for the benchmark

year...” to estimate the replacement cost figures of machinery and equipment.

3.9.2 Malmquist TFP Index
Malmquist TFP index, first defined in a consumer index by Malmquist (1953), and then
proposed as a productivity index by Caves et. al.(1982). Compared to indices like the Fisher

ideal index and the Tornqvist index , the Malmquist index has several advantages:

(1) No assumptions regarding market structure or economic behaviour , e.g. cost

minimizing or profit maximizing , needs to be made in construction of Malmquist index;

(i1) Malmquist index requires no information on prices;

(ii1)) Malmquist index corresponds to very general structure of technology since it

requires less restrictive assumptions than other commonly used indices;

(iv) It allows for inefficiency and thus, allows to decompose productivity growth into
two mutually exclusive and exhaustive components: changes in technical efficiency over time
and shifts in technology over time. This component lends themselves in a natural way to the

identification of innovation, respectively; and

(v) It does not require econometric estimation, but can be implemented with a data

envelopment analysis (DEA).
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Caves, Christensen and Diewert (1982) defined the Malmquist productivity index
(output based) as the ratio of two (output) distance functions. Distance functions are functions
represents of multiple-output, multiple-input technology, which require data only on input and

output quantities.

Suppose that for each time period t=1, 2... T the production technology S¢ is given. The
technology St = {(X¢, Q%): X* can produce Q'}, describes all feasible pairs of input-output
vectors. It is assumed that the constant returns to scale prevail so that output based technical
efficiency equals the input-based technical efficiency index. Following Shephard (1970) and

Fare (1988), the output distance function at point t is defined as:

Do((Xt, Q%) = inf{0: (X¢, Q%) /6)eSt} (3.9.2.1)

=[sup{6: (X*,0Q") /6)eS*]" (3.9.2.2)

This function is homogeneous of degree+1 in outputs and it is the reciprocal of output based
Farrell (1957) measure of technical efficiency. It completely characterize the technology in

the sense that (X¢, Q%)eSt if and only if Dy((X¢, Q%) < 1.

To define the Malmquist index, mixed time period distance functions must be introduced. In

particular,

DEL(XE, QY) = inf(6: (X¢, Q1) /6)eSt+1} (3.9.2.3)
and

DE(XE*L, QH+Y) = inf{0: (X1, Q%) /0)eSt}  (3.9.2.4)

The terminology 'mixed period' is used since information from t and t+1 is required to define
equations (3.9.2.3) and (3.92.4). Again, D{*1((X%,Q) <1 if and only if

(X%, QH)eS 1 and similarly for DE(Xt+1,Qt+1).
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Caves, Christensen and Diewert (1982) defined the output based Malmquist

productivity index as:

_ Dg(Xt+1,Qt+1)

M' = TR0 (3.9.2.5)

3.10 Data

The present study uses secondary data primarily from two sources. (i) Annual Survey of
Industries: Summary Results for Factory Sector (various issues) in order to get industry level
long run time series data on Tea Manufacturing for the period 1991 — 2009 (NIC — 2001 5
Digit Classification Code: 22710), and (ii)) Annual Balance Sheet information as per CSO
(Central Statistical Organisation) format at the Estate level, submitted to the Tea Board of
India on an annual basis. The study period is 2001- 2010. The study targets 31 firms, around
17 from upper Assam and the remaining from the three districts of Barak Valley. The
selection of the gardens is on the basis of convenient sampling. The sample for the present
study is entirely non-random. The data in its present format is too difficult to obtain at the
garden level. During the course of the survey as many as 85 gardens of both Barak valley
and that of Upper Assam were visited for relevant information about inputs and output. Most
of the managerial staff declined to provide such detailed data at the garden level. In fact just
31 gardens responded positively by furnishing the desired data on relevant inputs and output
over the study period. Thus there may be a certain degree of non-randomness in the data
which under the present circumstances was unavoidable. It is possible that either the board of
directors and/or the garden owners strictly instruct factory managers not to divulge balance

sheet related data to any third party and that includes academic institutions and researchers as
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well. From this reaction of garden owners and managers it is apparent that owners and the
members of the board of directors are inclined more towards suppression of information
related real output, revenue, costs, profits and profits after taxes. Thus garden level and

factory level data are difficult to obtain.

Chapter Four

EMPIRICAL RESULTS AND
DISCUSSION
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