

Chapter IV

Part of Speech Tagger for Kashmiri

82

4.0 Introduction

Corpus based natural language processing (NLP) tasks for popular

languages like English, French etc. have been much worked on with success. On

the contrary, very little or rather no work has been done on languages like

Kashmiri which are at the primary level in the NLP realm. One of the main

reasons is the absence of annotated corpus for such languages. Corpus annotation

is the practice of adding interpretative especially linguistic information to a text

corpus by coding, added to the electronic representation of the text itself.

A typical case of corpus annotation is that of morphosyntactic annotation

(also called grammatical tagging), whereby a label or tag is associated with each

word token in the text to indicate its grammatical classification. Annotated

corpora serves as an important tool for investigators of natural language

processing, speech recognition and other related areas. It is a basic building block

for constructing statistical models for automatic processing of natural languages.

Keeping in view the importance of NLP tasks, and in order to overcome the

shortage of the annotated corpus for Kashmiri an attempt is made to build an

annotated corpus for Kashmiri so that the ultimate goal of developing an

automatic tagger is fulfilled.

A large number of current language processing systems use a part-of-

speech tagger for pre-processing. The tagger usually annotates the given word or

a token. In other words, a POS tagger assigns a (unique or ambiguous) part-of-

speech tag to each token in the input and then passes it to the next processing

83

level (chunking, parsing etc.). Part-of-speech tagging is also important for corpus

annotation projects, with the help of which valuable linguistic resources are

created by a combination of automatic processing and human correction.

For both these applications, a tagger with the highest possible accuracy is

required. The debate over the issue of which tagger solves the parts of speech

problem in the best way is not over. Several approaches have been used to

construct automatic taggers. Most of the work done is based on statistical methods

using n-gram models for Hidden Markov Model–based tagger (Church 1988; De

rose 1988; Cutting et al 1992; Merialdo 1994; Kupiec 1992; Brill 1992 and

Voutilainen et al 1992). In these approaches a tag sequence is chosen for a

sentence that maximizes the product of lexical and contextual probabilities as

estimated from a tagged corpus.

4.1 Hidden Markov Model

A Hidden Markov Model (HMM) is a statistical construct that can be used

to solve classification problems that have an inherent state sequence

representation. The model includes an interconnected set of states which are

connected by a set of transition probabilities. Transition probabilities indicate the

probability of traveling between two given states. A process starts at a particular

state and moves to a new state as governed by the transition probabilities in

discrete time intervals. As the process enters into a state one of a set of output

symbol (also known as observation) is emitted by the process. The symbol

emitted, is dependent on the probability distribution of the particular state. The

84

output of the HMM is a sequence of output symbols. In an HMM, the exact state

sequence corresponding to a particular observation sequence is unknown (i.e.

hidden).

A POS tagger based on Hidden Markov Model (HMM) (Jurafsky and

Martin, 2000) assigns the best sequence of tags to an entire sentence. Generally,

the most probable tag sequence is assigned to each sentence following the Viterbi

algorithm (Viterbi, 1967). The task of Part of Speech (POS) tagging is to find the

sequence of POS tags T = {t1, t2, t3, . . .tn} that is optimal for a word sequence W

= {w1, w2, w3 . . . wn}. The tagging problem becomes equivalent to searching for

argmaxTP(T) * P(W | T), by the application of Bayes’ law.

The probability of the tag i.e., P(T) can be calculated by Markov

assumption which states that the probability of a tag is dependent only on a small,

fixed number of previous tags. We have used tri-gram model, i.e., the probability

of a tag depends on two previous tags, and then we have,

P(T) = P(t1) * P(t2 | t1) * P(t3 | t1, t2) * P(t4 | t2, t3) * . . . * P(tn | tn - 2 , tn - 1).

An additional tag ‘$’ (dummy tag) has been introduced in this work to

represent the beginning of a sentence. So, the previous probability equation can be

slightly modified as:

P(T) = P(t1 | $) * P(t2 | $, t1) * P(t3 | t1, t2) * P(t4 | t2, t3) * ... * P(tn | tn - 2 , tn - 1)

Due to sparse data problem the linear interpolation method has been used

to smooth the trigram probabilities as follows:

P'(tn | tn - 2 , tn - 1) = λ1 P(tn) + λ2 P(tn | tn-1) + λ3P(tn | tn - 2 , tn - 1)

85

such that the λs sum to 1.

The values of λs have been calculated by the following method (Brants,

2000):

set λ1 = λ2 = λ3 =0

for each tri-gram t1, t2, t3 with freq(t1, t2, t3)>0

depending on the maximum of the following three values:

case :
𝑓𝑟𝑒𝑞(𝑡1,𝑡2 ,𝑡3)−1

𝑓𝑟𝑒𝑞(𝑡1,𝑡2)−1
∶ 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝜆3 𝑏𝑦 𝑓𝑟𝑒𝑞(𝑡1, 𝑡2, 𝑡3)

case :
𝑓𝑟𝑒𝑞(𝑡2,𝑡3)−1

𝑓𝑟𝑒𝑞(𝑡2)−1
∶ 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝜆2 𝑏𝑦 𝑓𝑟𝑒𝑞(𝑡1, 𝑡2, 𝑡3)

case :
𝑓𝑟𝑒𝑞(𝑡3)−1

𝑁−1
∶ 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝜆1 𝑏𝑦 𝑓𝑟𝑒𝑞(𝑡1, 𝑡2, 𝑡3)

end

normalize λ1, λ2, λ3

Here, N is the corpus size, i.e., the number of tokens present in the training

corpus. If the denominator in one of the expression is 0, we define the result of

that expression to be 0. The -1 in both the numerator and denominator has been

considered for taking unseen data into account. By making the simplifying

assumption that the relation between a word and its tag is independent of context,

we can simplify P(W | T) as the following equation:

P(W | T) ≈ P(w1| t1) * P(w2| t2)* . . . * P(wn | tn)

The emission probabilities in the above equation can be calculated from

the training set as:

86

Emission Probability: P(wi | ti) =
𝑓𝑟𝑒𝑞(𝑤𝑖,𝑡𝑖)

𝑓𝑟𝑒𝑞(𝑡𝑖)

4.1.1 Context Dependency

To make the Markov model more powerful, additional context dependent

feature has been introduced to the emission probability in this work that specifies

the probability of the current word depends on the tag of the previous word and

the tag to be assigned to the current word. Now, we calculate P(W | T) by the

following equation:

P(W | T) ≈ P(w1 | $, t1) * P(w2 | t1, t2) * . . . * P(wn | tn - 1, tn)

So, the emission probability can be calculated as

P(wi | ti - 1, ti) =
𝑓𝑟𝑒𝑞(𝑡𝑖−1,𝑡𝑖,𝑤𝑖)

𝑓𝑟𝑒𝑞(𝑡𝑖−1,𝑡1)

Here also the smoothing technique is applied rather than using the

emission probability directly. The emission probability is calculated as:

P'(wi | ti - 1, ti) = θ1P(wi | ti) + θ2P(wi | ti - 1, ti)

where θ1, θ2 are two constants such that all θs sum to 1.

The values of θs should be different for different words. But the

calculation of θs for every word takes a considerable time and hence θs are

calculated for the entire training corpus. In general, we can calculate the values of

θs by the following method like λs:

set θ1 = θ2 =0

for each bi-gram t1, t2 with freq(t1, t2) > 0

87

depending on the maximum of the following two values:

case :
𝑓𝑟𝑒𝑞(𝑡2,𝑡3)−1

𝑓𝑟𝑒𝑞(𝑡2)−1
∶ 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝜃2 𝑏𝑦 𝑓𝑟𝑒𝑞(𝑡1, 𝑡2, 𝑡3)

case :
𝑓𝑟𝑒𝑞(𝑡3)−1

𝑁−1
∶ 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝜃1 𝑏𝑦 𝑓𝑟𝑒𝑞(𝑡1, 𝑡2, 𝑡3)

end

normalise θ1, θ2

Now, the emission probability and transition probability have been joined

together to set up the modified Hidden Markov model as shown in below:

Figure 4.1: Modified Hidden Markov Model

Wi+1

Wi

Wi-1

Wi-2

Ti+1

Ti

Ti-1

Ti-2

P' (wi-2 | ti-3, ti-2) P’(wi-1| ti-2, ti-1) P' (wi| ti-1, ti) P'(wi+1|ti,ti+1)

88

4.1.2 Viterbi Algorithm

We now know how to derive the probabilities needed for the Markov

model, and how to calculate P(T | W) for any particular (T, W) pair. But what we

really need is to be able to find the most likely T for a particular W. The Viterbi

algorithm (Viterbi, 1967) allows us to find the best T in the linear time. The idea

behind the algorithm is that of all the state sequences, only the most probable of

these sequences need to be considered. The trigram model has been used in the

present work. The pseudo code of the algorithm is shown below.

Fori = 1 to Number_of_Words_in_Sentence

for each state c ∈ Tag_Set

for each state b ∈ Tag_Set

for each state a ∈ Tag_Set

For the best state sequence ending in state a at time (i -2), b

at time (i-1), compute the probability of that state sequence

going to state c at time i.

end

end

end

Determine the most-probable state sequence ending in state c at time i.

end

89

So if every word can have S possible tags, then the Viterbi algorithm runs

in O(S3*|W|) time, or linear time with respect to the length of the sentence.

4.1.3 Handling the Unknown Words

Handling of unknown words is an important issue in POS tagging. For

words which have not been seen in the training set, P(wi | ti) is estimated based on

features of the unknown words, such as whether the word contains a particular

suffix. The list of suffixes will also be created. The linguistic rules will also be

used to assign the most possible tag to the unknown words.

4.2 Our Approach

We have used an HMM for automatic POS tagging of natural language

text. The HMM uses three components and are depicted in Figure 4.2. First, the

system requires some knowledge about the task of POS disambiguation. The

knowledge may come from several resources and can be encoded in various

representations. We call this representation as language model. In particular, to

HMM, the language model is represented by the model parameters (, ,)A B .

We aim to estimate the model parameters (, ,)A B of the HMM using

corpora. The model parameters of the HMM are estimated based on the labeled

data during supervised learning. Unlabeled data are used to re-estimate the model

parameters during semi-supervised learning. The taggers will be implemented

based on both bigram and trigram HMM models.

90

Figure 4.2: The HMM based POS tagging architecture

Secondly, there is a disambiguation algorithm, which decides the best

possible tag assignment for every word in a sentence according to the language

model. We use Viterbi algorithm for disambiguation. The third component

estimates the set of possible tags {T}, for every word in a sentence. We shall call

this as possible class restriction module. This module consists of a list of lexical

units associated with the list of possible tags. In our approach, we first assume

that every word can be associated with all the tags in the tagset. Further, we

assume the POS tag of a word ‘w’ can take the values from the set T(w). These

three components are related and we combine them into a single tagger

description. The input to the disambiguation algorithm takes the list of lexical

units with the associated list of possible tags. The disambiguation module

provides the output tag for each lexical unit using the encoded information from

the language model. The following subsections give a detailed design of the

above three components in our work.

91

4.2.1 Models

There are several ways of representing the HMM based model for

automatic POS tagging according to the way we acquire knowledge. The HMM

models use the following three sources of information.

a. Symbol emission probabilities, i.e. the probability of a particular tag ti,

given a particular word wi, (|)i iP w t .

b. State transition probabilities, i.e. the probability of a particular tag

depending on the previous tags, 1 2(|)i i i i kP t t t t .

c. Probability for the initial sate, i.e. the probability of a particular tag as

an initial state of a Markov model

The above parameters can be estimated using only labeled data during

supervised learning. We shall call this model HMM-S. Further, semi-supervised

learning can be performed by augmenting the labeled data with additional

unlabeled data. We shall call this model HMM-SS.

The state transition probabilities are often estimated based on previous one

(first-order or bigram) or two (second-order or trigram) tags. Depending on the

order of the symbol transition probability we shall call the Markov process as

first-order (HMM1) and second-order (HMM2) Markov process respectively.

We adopt four different Markov models for representing the language model: (1)

Supervised first-order HMM (HMM-S1) (2) Semi-supervised first-order HMM

(HMM-SS1) (3) Supervised second-order HMM (HMM-S2) (4) Semi-supervised

second-order HMM (HMM-SS2).

92

4.2.1.1 Supervised HMM (HMM-S)

In this model, the model parameters are estimated using only labeled

training data. In a k-th order Markov model, the state transition probability of a

particular tag ti depends on the previous k-1 tags in the sequence,

1 2... 1(|)i i i i kP t t t t . In the supervised first-order HMM (HMM-S1), the state

transition probability of a particular tag ti depends only on the previous tag ti-1(i.e.

1(|)i iP t t). The symbol emission and state transition probabilities are estimated

directly from the labeled training data as follows.

1
1

1

(,)
(|)

()

i i
i i

i

C t t
P t t

C t

 and
(,)

(|)
()

i i
i i

i

C w t
P w t

C t
 , where C() denotes the number of

occurrence in the labeled training data. As we are dealing with a small labeled

corpora it is often possible that 1,()i iC t t and ,()i iC w t will become zero. To

cope with the above situation, state transition probabilities are smoothed and

symbol emission probabilities are estimated for handling unknown words that are

not in the labeled corpora.

Like supervised first-order HMM (HMM-S1), the model parameters of the

supervised second-order HMM (HMM-S2) are also estimated simply by counting

from the labeled training data. Here the state transition probabilities of a particular

tag ti depends on the previous two tags ti-1 and ti-2, 2 1(| ,)i i iP t t t . Experiments

have been carried out with TnT tagger (Brants, 2000); a supervised trigram HMM

tagger along with suffix tree information for unknown words. When a particular

instance of a trigram state transition probability does not occur in the training data

93

the state transition probabilities are smoothed and the symbol emission

probabilities for unknown words are computed using the probability distribution

for a particular suffix generated from all words in the labeled corpora (Brants,

2000).

4.2.1.2 Semi-supervised HMM (HMM-SS)

In semi-supervised first-order HMM, we first make use of the labeled

training data to train the initial model. Further we make use of semi-supervised

learning by augmenting the labeled data with a large amount of unlabeled data.

The semi-supervised learning uses Baum-Welch re-estimation (or equivalently the

expectation maximization (EM)) algorithm by recursively defining two sets of

probabilities, the forward probabilities and the backward probabilities. First, we

determine the initial choice for model parameters A, B and from the labeled

data. After choosing the above starting values, we iteratively use Baum-Welch

algorithm to compute the new values of model parameters until convergence.

 Baum Welch, or forward backward algorithm, recursively define two sets

of probabilities. The forward probabilities,

1 1

1

() () ()
N

t t ij j t

i

j i a b w

 1≤ t ≤ T, (where 1 1() ()i ii b w for all i),

and the backward probabilities,

1 1

1

() () () 1 1
N

t j j t t

j

i ai b w j T t

 , (where () 1T j for all j).

The forward probability ()t i is the joint probability of the sequence up to

time t, {w1, w2, …,wt}and the Markov process is in state i at time t. Similarly, the

backward probability ()t j is the probability of seeing sequence {wt+1, wt+2,

94

…,wT} and the Markov process is in state i at time t. It follows the probability of

the entire sequence is

1 1

1 1

() () ()
N N

t ij j t t

i j

P i a b w j

 for any t in the range 1 ≤ t≤ T-1.

After the initial choice of the model parameters (, ,)A B from the

training data, the expected number of transition ij from state i to j conditions on

the observation sequence W is computed as follows:

1

1

1
1 1() () ()

T

t

ij t ij j t t
P

i a b w j

 , which is expected number of

transition from state i to j.

Hence, the expected transition probability from a particular state i to a

particular state j (i.e. ˆija) are estimated by:

1

1

1 1

1

1 1

() () ()
ˆ

() ()

T

t

t ij j t t
ij

ij
N T

ij t t

j t

i a b w j
a

i i

 Eq. 1

In particular, to POS tagging, the above probability is the ratio of the

expected number of transitions from a particular tag ti to another particular tag tj

and the total expected number of transition from tag ti to tj.

Similarly, the emission probability (i.e. ˆ ()bj k) and initial probability

(i.e. ˆi) can be estimated as follows:

1

() ()
ˆ ()

() ()

t t
t k

j
T

t t

t

j jW wb k

j j

 Eq. 2

and

95

1 1
1

ˆ () ()i i i
p

 Eq. 3

The Baum Welch algorithm uses EM algorithm. Starting from at the initial

model (, ,)A B obtained by the supervised learning using the small annotated data,

we repeatedly compute the new values { ˆ ˆ(, ,)ˆ ˆ A B } applying the equation 2-4

until convergence. It has been shown that the algorithm will converge, possibly

to a non global local maximum.

4.2.2 Disambiguation

The aim of the disambiguation algorithm is to assign the most probable tag

sequence t1 … tn, to a observed sequence of words w1 … wn, that is

1

1 1

...

argmax (... | ...)n n

t tn

S P t t w w

The stochastic optimal sequence of tags t1 … tn, are assigned to the word

sequence w1 … wn, can be expressed as a function of both lexical (|)i iP w t and

language model 1(|)i iP t t probabilities using Bayes’ Theorem:

1 1 1
1 1

1

1
1,

1

(... | ...) (...)
(... | ...)

(...)
(|) (|)

(...)

n n n
n n

n

i i i i
i n

n

P w w t t P t t
P t t w w

P w w
P w t P t t

P w w

Since the probability of the word sequence 1(...)nP w w is the same for all

candidate tag sequences, the most probable tag sequence (S) satisfies:

1

1

... 1,

(|) (|)arg max i i i i

t tn i n

S P w t P t t

 Eq. 4

96

We use the Viterbi algorithm to find out the most probable tag sequence

for a given word sequence. It is a very effective dynamic programming algorithm

which takes O(TN2) time. The algorithm works as follows:

Let S = {s(t)} 1 ≤ t ≤ T is a state sequence (i.e. the tag sequence) that

generates W = {w(t)} (the word sequence or observation of the HMM). Then the

probability that S generates W is,

(1) (1) 1 (1) () ()

2

() () ()
T

s s s t s t s t t

t

P S b w a b w

To find the most probable sequence, the process starts with

1 1() ()i ii b w where 1 ≤ i ≤ N, and then performs the following steps:

The most probable sequence at state i in time t is the only consideration

for each time t and state i. The probability of the most probable sequence is

 1 ()max i N T i . The most probable sequence is reconstructed by

 1() arg max ()Ti Ns T i and (1) ()t ts t s for T ≥ t ≥2.

4.2.3 Smoothing

It may be the case that all events are not encountered in the limited

training corpus that we have. The probabilities corresponding to these events

would be set to zero. However the event may occur during testing. The problem

97

can be solved using different smoothing algorithms. Initially simple add-one

smoothing was used to estimate the state transition probabilities that are not in the

training corpora. Further, linear interpolation of unigram and bigram has been

implemented for smoothing the state transition probabilities. We smooth the n-

gram state transition probability for various n as follows:

1, 2, ..., (1) 1 2 1 1, 2, ..., (1)(|) () (|) ... (|)li i i i i n i i i n i i i i nP t t t t P t P t t P t t t t

The values of 1, 2 , …, n are estimated by deleted interpolation (Brants, 2000)

and
1

1
n

i

i

 .

When some new text is processed, few words might be unknown to the

tagger. In our model, words are unknown when they are not included in the

training text. Initially, we estimated the symbol emission probability by simple

add-one smoothing. Further, we use suffix information for handling unknown

words which has been found to work well for highly inflected languages

(Samuelsson, 1993). The term suffix is a sequence of last few characters of a

word, which does not necessarily mean a linguistically meaningful suffix. First

we calculate the probability of a particular tag ti, given the last m letters (li) of an

n letter word: n 1 n(| ,...,)i mP t l l .Based on the above hypothesis we calculate the

symbol emission probabilities using Bayes’ rule:

n 1 n

(| _) (_)
(_ |)

()

(| ,...,) (_)

()

i
i

i

i m

i

P t Unknown word P Unknown word
P Unknown word t

P t

P t l l P Unknown word

P t

98

The probability (_)P Unknown word is approximated in open testing text

by measuring the unknown word frequency. Therefore the model parameters are

adopted each time an open testing text is being tagged. The probability

n 1 n(| ,...,)i mP t l l and the probability ()iP t are measured in the training text. We

conducted different experiments varying the suffix length from 1 to 6 characters.

It has been observed empirically that the suffix length of 4 gives better results for

all the HMM based models. Based on our observations, the inclusion of suffix

essentially captures helps to understand the morphological inflection of the

surface form word and in Kashmiri most morphological inflections lies in the last

4 characters of the words. Finally, each symbol emission probability of unknown

word has been normalized:

Where, N is the number of known words and ti {T}.

4.3 Experiments

We have implemented baseline model to understand the complexity of the

POS tagging task. In this model the tag probabilities depend only on the current

word:

The effect of this is that the each word in the test data will be assigned the

tag which occurred most frequently for that word in the training data.

1

(|) (_ |) 1
N

iP wi ti P Unknown word t

1 1

1,

(|)(... | ...) i in n

i n

P t wP t t w w

99

 The experiments were conducted with five different sizes (100K, 120K,

140K, 160K and 180K words) of the training data to understand the relative

performance of the models as we keep on increasing the size of the annotated

data.

 We have used Trigrams'n'Tags (TnT) tagger, which is based on a

supervised trigram HMM with suffix tree information for unknown words. These

experiments give us some insight about the performance of the tagging task in

comparison with the order of the Markov model in a poor-resource scenario.

4.3.1 Training Data

The training data consists of 2,00,000 manually annotated words. The

training data has been annotated using a Kashmiri POS tagset as discussed in

section 3.5 (Table 3.37).The annotated corpus was then used by the tagger for

creating the language model i.e. lexical and n-gram files were created. It has been

observed that the corpus ambiguity (mean number of possible tags for each word)

in the training text is 1.77 which is much larger compared to the figure reported

for European languages (Dermatas et al.,1995).

Once the language model was developed, the untagged files were then

given to the tagger for automatically annotating the corpus. The tagged files

produced by the tagger are then manually checked for errors. The files after being

manually corrected are then added to the training corpus to retrain the tagger in

order to increase the accuracy of the tagger.

100

4.3.2 Test Data

The language models have been tested on a set of randomly drawn 50,000

words distinct from the training corpus. It has been noted that 14% words in the

open testing text are unknown with respect to the training set, which is also a little

higher compared to the European languages (Dermatas et al., 1995).

4.3.3 System Performance

We define the tagging accuracy as the ratio of the correctly tagged words

to the total number of words.

(%) 100
.

Correctly tagged words by the system
Accuracy

Total no of words in the evaluation set

The accuracy of the TnT tagger is checked by comparing two files, one is

the manually tagged file and another is the file tagged by the tagger. The process

of retraining the tagger continued till the highest level of accuracy is achieved.

The schematic diagram given below shows the optimization process of the TnT

tagger using Kashmiri corpus.

101

Fig. 4.3 Optimization process of TnT using Kashmiri Corpus.

4.3.4 Evaluation

The overall accuracy of the tagger depends upon the size of the corpus and

the accuracy of the tags assigned. Therefore, training corpus should be large and

the accuracy of tags should be as high as possible. Generally, the bigger the

Annotation (Files are

manually tagged)

Tagged

File

Parameter

Generator

Tagger

Training

Data

Tagged file are checked for

errors

Untagged

File

Tagged

File

e-Corpus

(Untagged data

files)

Language Model

Lexical

File

n-gram

File

Annotated

Corpus

(Tagged Files)

102

corpus the higher the accuracy of the training corpus, with the result the overall

performance of the tagger is better. Tagger’s performance is evaluated at several

steps. First of all tagging accuracy is determined over ten iterations. All tests are

performed in partitions i.e. the overall corpus is divided into parts.

Initially corpus of around 2,00,000 words was taken. Then this corpus was

divided into two parts out of which 50% was used for training the tagger and the

remaining 50% of the corpus was used as test data for checking the accuracy of

the tagger.The test data is unseen during training. By using these proportions, the

overall accuracy of 62.55% was found. Then separate accuracies of known and

unknown words were also calculated. In the test data 92.80% of words were

known and 7.80% of the words were unknown to the tagger. And the accuracy of

known and unknown words was 87.02% and 38.19% respectively. Each result

was obtained by repeating the experiment 5 times with different partitions that is,

the first partition was taken as 50%- 50% then next partition was 60%- 40% and

so on and so forth to check the accuracy of the tagger. The results obtained are

shown in the table given below.

Corpus Overall Known Words Unknown Words

Total

Corpus

Training

Data

Test Data Acc. (%) Errors (%) Acc. (%) Errors (%) Acc. (%) Errors (%)

2,00,000

1,00,000 1,00,000 62.55 37.45 87.02 12.98 38.19 61.81

1,20,0000 80,000 68.10 31.90 85.22 14.78 40.15 59.85

1,40,000 60,000 76.39 23.61 84.78 15.22 42.11 57.89

1,60,000 40,000 85.64 14.36 85.62 14.38 51.68 48.32

1,80,000 20,000 96.28 03.72 87.62 12.38 52.35 47.65

Table 4.1: Part-of-speech accuracy of Kashmiri POS tagger.

103

The learning curve for the above results is represented below:

The curve given above shows the increase in accuracy as the training data is

increased.Accuracy for known words is significantly higher than the unknown words.

4.4 Conclusion

The tagger developed for Kashmiri is in a preliminary stage as no NLP

related work (corpus development, tagset development and other related works)

has been done before in Kashmiri.

0

20

40

60

80

100

120

A
cc

u
ra

cy
 [

%
]

Unknown
Words

Overall Data

Known
Words

Training/Test Data

Fig. 4.4 Kashmiri Corpus: POS learning curve.

104

In this chapter, we have described an approach for automatic stochastic

tagging of natural language text. The models described here are very simple and

efficient for automatic tagging even when the amount of available labeled text is

small.

	4.2.1 Models
	4.2.1.1 Supervised HMM (HMM-S)
	In this model, the model parameters are estimated using only labeled training data. In a k-th order Markov model, the state transition probability of a particular tag ti depends on the previous k-1 tags in the sequence, . In the supervised first-order...
	and, where C() denotes the number of occurrence in the labeled training data. As we are dealing with a small labeled corpora it is often possible that and will become zero. To cope with the above situation, state transition probabilities are smooth...
	4.2.1.2 Semi-supervised HMM (HMM-SS)

	4.2.2 Disambiguation
	4.2.3 Smoothing
	4.3 Experiments
	4.3.1 Training Data
	4.3.2 Test Data

	4.3.3 System Performance

