
 
 
 
 
 
 
 
 
 
 
 
 

Chapter IV 
 

Part of Speech Tagger for Kashmiri 

 
  



82 
 
 

4.0 Introduction 

Corpus based natural language processing (NLP) tasks for popular 

languages like English, French etc. have been much worked on with success. On 

the contrary, very little or rather no work has been done on languages like 

Kashmiri which are at the primary level in the NLP realm. One of the main 

reasons is the absence of annotated corpus for such languages. Corpus annotation 

is the practice of adding interpretative especially linguistic information to a text 

corpus by coding, added to the electronic representation of the text itself.  

A typical case of corpus annotation is that of morphosyntactic annotation 

(also called grammatical tagging), whereby a label or tag is associated with each 

word token in the text to indicate its grammatical classification. Annotated 

corpora serves as an important tool for investigators of natural language 

processing, speech recognition and other related areas. It is a basic building block 

for constructing statistical models for automatic processing of natural languages. 

Keeping in view the importance of NLP tasks, and in order to overcome the 

shortage of the annotated corpus for Kashmiri an attempt is made to build an 

annotated corpus for Kashmiri so that the ultimate goal of developing an 

automatic tagger is fulfilled.  

A large number of current language processing systems use a part-of-

speech tagger for pre-processing. The tagger usually annotates the given word or 

a token. In other words, a POS tagger assigns a (unique or ambiguous) part-of-

speech tag to each token in the input and then passes it to the next processing 
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level (chunking, parsing etc.). Part-of-speech tagging is also important for corpus 

annotation projects, with the help of which valuable linguistic resources are 

created   by a combination of automatic processing and human correction.  

For both these applications, a tagger with the highest possible accuracy is 

required. The debate over the issue of which tagger solves the parts of speech 

problem in the best way is not over. Several approaches have been used to 

construct automatic taggers. Most of the work done is based on statistical methods 

using n-gram models for Hidden Markov Model–based tagger (Church 1988; De 

rose 1988; Cutting et al 1992; Merialdo 1994; Kupiec 1992; Brill 1992 and 

Voutilainen et al 1992). In these approaches a tag sequence is chosen for a 

sentence that maximizes the product of lexical and contextual probabilities as 

estimated from a tagged corpus.  

4.1 Hidden Markov Model   

A Hidden Markov Model (HMM) is a statistical construct that can be used 

to solve classification problems that have an inherent state sequence 

representation. The model includes an interconnected set of states which are 

connected by a set of transition probabilities.  Transition probabilities indicate the 

probability of traveling between two given states. A process starts at a particular 

state and moves to a new state as governed by the transition probabilities in 

discrete time intervals. As the process enters into a state one of a set of output 

symbol (also known as observation) is emitted by the process. The symbol 

emitted, is dependent on the probability distribution of the particular state. The 



84 
 
 

output of the HMM is a sequence of output symbols. In an HMM, the exact state 

sequence corresponding to a particular observation sequence is unknown (i.e. 

hidden). 

A POS tagger based on Hidden Markov Model (HMM) (Jurafsky and 

Martin, 2000) assigns the best sequence of tags to an entire sentence. Generally, 

the most probable tag sequence is assigned to each sentence following the Viterbi 

algorithm (Viterbi, 1967). The task of Part of Speech (POS) tagging is to find the 

sequence of POS tags T = {t1, t2, t3, . . .tn} that is optimal for a word sequence W 

= {w1, w2, w3 . . . wn}. The tagging problem becomes equivalent to searching for 

argmaxTP(T ) * P(W | T ), by the application of Bayes’ law. 

The probability of the tag i.e., P(T) can be calculated by Markov 

assumption which states that the probability of a tag is dependent only on a small, 

fixed number of previous tags. We have used tri-gram model, i.e., the probability 

of a tag depends on two previous tags, and then we have, 

P(T ) = P(t1) * P(t2 | t1) * P(t3 | t1, t2) * P(t4 | t2, t3) * . . . * P(tn | tn - 2 , tn - 1). 

An additional tag ‘$’ (dummy tag) has been introduced in this work to 

represent the beginning of a sentence. So, the previous probability equation can be 

slightly modified as: 

P(T ) = P(t1 | $) * P(t2 | $, t1) * P(t3 | t1, t2) * P(t4 | t2, t3) * ... * P(tn | tn - 2 , tn - 1) 

Due to sparse data problem the linear interpolation method has been used 

to smooth the trigram probabilities as follows: 

P'(tn | tn - 2 , tn - 1) = λ1 P( tn ) + λ2 P(tn | tn-1 ) + λ3P(tn | tn - 2 , tn - 1) 
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such that the λs sum to 1. 

The values of λs have been calculated by the following method (Brants, 

2000): 

set λ1 = λ2 = λ3 =0 

for each tri-gram t1, t2, t3 with freq(t1, t2, t3 )>0 

depending on the maximum of the following three values: 

case :
𝑓𝑟𝑒𝑞(𝑡1,𝑡2 ,𝑡3)−1

𝑓𝑟𝑒𝑞(𝑡1,𝑡2)−1
∶ 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝜆3 𝑏𝑦 𝑓𝑟𝑒𝑞(𝑡1, 𝑡2, 𝑡3) 

case :
𝑓𝑟𝑒𝑞(𝑡2,𝑡3)−1

𝑓𝑟𝑒𝑞(𝑡2)−1
∶ 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝜆2 𝑏𝑦 𝑓𝑟𝑒𝑞(𝑡1, 𝑡2, 𝑡3) 

case :
𝑓𝑟𝑒𝑞(𝑡3)−1

𝑁−1
∶ 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝜆1 𝑏𝑦 𝑓𝑟𝑒𝑞(𝑡1, 𝑡2, 𝑡3) 

end 

normalize λ1, λ2, λ3 

Here, N is the corpus size, i.e., the number of tokens present in the training 

corpus. If the denominator in one of the expression is 0, we define the result of 

that expression to be 0. The -1 in both the numerator and denominator has been 

considered for taking unseen data into account. By making the simplifying 

assumption that the relation between a word and its tag is independent of context, 

we can simplify P(W | T ) as the following equation: 

P(W | T ) ≈ P(w1| t1) * P(w2| t2)* . . . * P(wn | tn) 

The emission probabilities in the above equation can be calculated from 

the training set as: 
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Emission Probability: P(wi | ti) =
𝑓𝑟𝑒𝑞(𝑤𝑖,𝑡𝑖)

𝑓𝑟𝑒𝑞(𝑡𝑖)
 

4.1.1 Context Dependency 

To make the Markov model more powerful, additional context dependent 

feature has been introduced to the emission probability in this work that specifies 

the probability of the current word depends on the tag of the previous word and 

the tag to be assigned to the current word. Now, we calculate P(W | T ) by the 

following equation: 

P(W | T ) ≈ P(w1 | $, t1) * P(w2 | t1, t2) * . . . * P(wn | tn - 1, tn) 

So, the emission probability can be calculated as 

P(wi | ti - 1, ti) =
𝑓𝑟𝑒𝑞(𝑡𝑖−1,𝑡𝑖,𝑤𝑖)

𝑓𝑟𝑒𝑞(𝑡𝑖−1,𝑡1)
 

Here also the smoothing technique is applied rather than using the 

emission probability directly. The emission probability is calculated as: 

P'(wi | ti - 1, ti) = θ1P(wi | ti) + θ2P(wi | ti - 1, ti) 

where θ1, θ2 are two constants such that all θs sum to 1. 

The values of θs should be different for different words. But the 

calculation of θs for every word takes a considerable time and hence θs are 

calculated for the entire training corpus. In general, we can calculate the values of 

θs by the following method like λs: 

set θ1 = θ2 =0 

for each bi-gram t1, t2 with freq(t1, t2) > 0  
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depending on the maximum of the following two values: 

case :
𝑓𝑟𝑒𝑞(𝑡2,𝑡3)−1

𝑓𝑟𝑒𝑞(𝑡2)−1
∶ 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝜃2 𝑏𝑦 𝑓𝑟𝑒𝑞(𝑡1, 𝑡2, 𝑡3) 

case :
𝑓𝑟𝑒𝑞(𝑡3)−1

𝑁−1
∶ 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝜃1 𝑏𝑦 𝑓𝑟𝑒𝑞(𝑡1, 𝑡2, 𝑡3) 

end 

normalise θ1, θ2 

Now, the emission probability and transition probability have been joined 

together to set up the modified Hidden Markov model as shown in below: 

 

 

 

  

 

 

 

 

Figure 4.1: Modified Hidden Markov Model 
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4.1.2 Viterbi Algorithm 

We now know how to derive the probabilities needed for the Markov 

model, and how to calculate P(T | W ) for any particular (T, W ) pair. But what we 

really need is to be able to find the most likely T for a particular W. The Viterbi 

algorithm (Viterbi, 1967) allows us to find the best T in the linear time. The idea 

behind the algorithm is that of all the state sequences, only the most probable of 

these sequences need to be considered. The trigram model has been used in the 

present work. The pseudo code of the algorithm is shown below. 

Fori = 1 to Number_of_Words_in_Sentence 

for each state c ∈ Tag_Set 

for each state b ∈ Tag_Set 

for each state a ∈ Tag_Set 

For the best state sequence ending in state a at time (i -2), b 

at time (i-1), compute the probability of that state sequence 

going to state c at time i. 

end 

end 

end 

Determine the most-probable state sequence ending in state c at time i. 

end 
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So if every word can have S possible tags, then the Viterbi algorithm runs 

in O(S3*|W|) time, or linear time with respect to the length of the sentence. 

4.1.3 Handling the Unknown Words 

Handling of unknown words is an important issue in POS tagging. For 

words which have not been seen in the training set, P(wi | ti) is estimated based on 

features of the unknown words, such as whether the word contains a particular 

suffix. The list of suffixes will also be created. The linguistic rules will also be 

used to assign the most possible tag to the unknown words. 

4.2 Our Approach 

We have used an HMM for automatic POS tagging of natural language 

text. The HMM uses three components and are depicted in Figure 4.2. First, the 

system requires some knowledge about the task of POS disambiguation. The 

knowledge may come from several resources and can be encoded in various 

representations. We call this representation as language model. In particular, to 

HMM, the language model is represented by the model parameters ( , , )A B  . 

We aim to estimate the model parameters ( , , )A B   of the HMM using 

corpora. The model parameters of the HMM are estimated based on the labeled 

data during supervised learning. Unlabeled data are used to re-estimate the model 

parameters during semi-supervised learning. The taggers will be implemented 

based on both bigram and trigram HMM models. 
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Figure 4.2: The HMM based POS tagging architecture 

Secondly, there is a disambiguation algorithm, which decides the best 

possible tag assignment for every word in a sentence according to the language 

model. We use Viterbi algorithm for disambiguation. The third component 

estimates the set of possible tags {T}, for every word in a sentence. We shall call 

this as possible class restriction module.  This module consists of a list of lexical 

units associated with the list of possible tags. In our approach, we first assume 

that every word can be associated with all the tags in the tagset. Further, we 

assume the POS tag of a word ‘w’ can take the values from the set T(w). These 

three components are related and we combine them into a single tagger 

description. The input to the disambiguation algorithm takes the list of lexical 

units with the associated list of possible tags. The disambiguation module 

provides the output tag for each lexical unit using the encoded information from 

the language model. The following subsections give a detailed design of the 

above three components in our work. 
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4.2.1 Models 

There are several ways of representing the HMM based model for 

automatic POS tagging according to the way we acquire knowledge. The HMM 

models use the following three sources of information. 

 

a. Symbol emission probabilities, i.e. the probability of a particular tag ti, 

given a particular word wi, ( | )i iP w t . 

b. State transition probabilities, i.e. the probability of a particular tag 

depending on the previous tags, 1 2( | ..... )i i i i kP t t t t   . 

c. Probability for the initial sate, i.e. the probability of a particular tag as 

an initial state of a Markov model 

 

The above parameters can be estimated using only labeled data during 

supervised learning. We shall call this model HMM-S. Further, semi-supervised 

learning can be performed by augmenting the labeled data with additional 

unlabeled data. We shall call this model HMM-SS.  

The state transition probabilities are often estimated based on previous one 

(first-order or bigram) or two (second-order or trigram) tags. Depending on the 

order of the symbol transition probability we shall call the Markov process as 

first-order (HMM1) and second-order (HMM2) Markov process respectively. 

We adopt four different Markov models for representing the language model: (1) 

Supervised first-order HMM (HMM-S1) (2) Semi-supervised first-order HMM 

(HMM-SS1) (3) Supervised second-order HMM (HMM-S2) (4) Semi-supervised 

second-order HMM (HMM-SS2). 
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4.2.1.1 Supervised HMM (HMM-S) 

In this model, the model parameters are estimated using only labeled 

training data. In a k-th order Markov model, the state transition probability of a 

particular tag ti depends on the previous k-1 tags in the sequence, 

1 2... 1( | )i i i i kP t t t t    . In the supervised first-order HMM (HMM-S1), the state 

transition probability of a particular tag ti depends only on the previous tag ti-1(i.e.

1( | )i iP t t  ).  The symbol emission and state transition probabilities are estimated 

directly from the labeled training data as follows. 

1
1

1

( , )
( | )

( )

i i
i i

i

C t t
P t t

C t






 and
( , )

( | )
( )

i i
i i

i

C w t
P w t

C t
 , where C( ) denotes the number of 

occurrence in the labeled training data. As we are dealing with a small labeled 

corpora it is often possible that 1,( )i iC t t  and ,( )i iC w t  will become zero. To 

cope with the above situation, state transition probabilities are smoothed and 

symbol emission probabilities are estimated for handling unknown words that are 

not in the labeled corpora. 

Like supervised first-order HMM (HMM-S1), the model parameters of the 

supervised second-order HMM (HMM-S2) are also estimated simply by counting 

from the labeled training data. Here the state transition probabilities of a particular 

tag ti depends on the previous two tags ti-1 and ti-2, 2 1( | , )i i iP t t t  . Experiments 

have been carried out with TnT tagger (Brants, 2000); a supervised trigram HMM 

tagger along with suffix tree information for unknown words. When a particular 

instance of a trigram state transition probability does not occur in the training data 
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the state transition probabilities are smoothed and the symbol emission 

probabilities for unknown words are computed using the probability distribution 

for a particular suffix generated from all words in the labeled corpora (Brants, 

2000). 

4.2.1.2 Semi-supervised HMM (HMM-SS) 

In semi-supervised first-order HMM, we first make use of the labeled 

training data to train the initial model.  Further we make use of semi-supervised 

learning by augmenting the labeled data with a large amount of unlabeled data. 

The semi-supervised learning uses Baum-Welch re-estimation (or equivalently the 

expectation maximization (EM)) algorithm by recursively defining two sets of 

probabilities, the forward probabilities and the backward probabilities. First, we 

determine the initial choice for model parameters A, B and   from the labeled 

data. After choosing the above starting values, we iteratively use Baum-Welch 

algorithm to compute the new values of model parameters until convergence. 

 Baum Welch, or forward backward algorithm, recursively define two sets 

of probabilities. The forward probabilities, 

1 1

1

( ) ( ) ( )      
N

t t ij j t

i

j i a b w  



 
  
 
 1≤ t ≤ T, (where 1 1( ) ( )i ii b w   for all i), 

and the backward probabilities, 

1 1

1

( ) ( ) ( )         1 1
N

t j j t t

j

i ai b w j T t  



    , (where ( ) 1T j   for all j). 

The forward probability ( )t i is the joint probability of the sequence up to 

time t, {w1, w2, …,wt}and the Markov process is in state i at time t. Similarly, the 

backward probability ( )t j is the probability of seeing sequence {wt+1, wt+2, 
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…,wT} and the Markov process is in state i at time t. It follows the probability of 

the entire sequence is 

1 1

1 1

( ) ( ) ( )
N N

t ij j t t

i j

P i a b w j  

 

  for any t in the range 1 ≤ t≤ T-1. 

After the initial choice of the model parameters ( , , )A B  from the 

training data, the expected number of transition ij  from state i to j conditions on 

the observation sequence W is computed as follows:  

1

1

1
1 1( ) ( ) ( )

T

t

ij t ij j t t
P

i a b w j  




   , which is expected number of 

transition from state i to j.  

Hence, the expected transition probability from a particular state i to a 

particular state j (i.e. ˆija ) are estimated by: 

1

1

1 1

1

1 1

( ) ( ) ( )
ˆ

( ) ( )

T

t

t ij j t t
ij

ij
N T

ij t t

j t

i a b w j
a

i i

 

  





 



 


 

 
  Eq. 1 

In particular, to POS tagging, the above probability is the ratio of the 

expected number of transitions from a particular tag ti to another particular tag tj 

and the total expected number of transition from tag ti to tj. 

Similarly, the emission probability (i.e. ˆ ( )bj k ) and initial probability 

(i.e. ˆi ) can be estimated as follows: 

1

( ) ( )
ˆ ( )

( ) ( )

t t
t k

j
T

t t

t

j jW wb k

j j

 

 









  Eq. 2 

and  
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1 1
1

ˆ ( ) ( )i i i
p

  
   Eq. 3 

The Baum Welch algorithm uses EM algorithm. Starting from at the initial 

model ( , , )A B  obtained by the supervised learning using the small annotated data, 

we repeatedly compute the new values { ˆ ˆ( , , )ˆ ˆ A B  } applying the equation 2-4 

until convergence. It has been shown that the algorithm will converge, possibly 

to a non global local maximum. 

4.2.2 Disambiguation 

The aim of the disambiguation algorithm is to assign the most probable tag 

sequence t1 … tn, to a observed sequence of words w1 … wn, that is 

1

1 1

...

argmax ( ... | ... )n n

t tn

S P t t w w  

The stochastic optimal sequence of tags t1 … tn, are assigned to the word 

sequence w1 … wn, can be expressed as a function of both lexical ( | )i iP w t  and 

language model 1( | )i iP t t   probabilities using Bayes’ Theorem: 

1 1 1
1 1

1

1
1,

1

( ... | ... ) ( ... )
( ... | ... )

( ... )
( | ) ( | )

( ... )

n n n
n n

n

i i i i
i n

n

P w w t t P t t
P t t w w

P w w
P w t P t t

P w w







  

Since the probability of the word sequence 1( ... )nP w w  is the same for all 

candidate tag sequences, the most probable tag sequence (S) satisfies: 

1

1

... 1,

( | ) ( | )arg max i i i i

t tn i n

S P w t P t t 



     Eq. 4 
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We use the Viterbi algorithm to find out the most probable tag sequence 

for a given word sequence. It is a very effective dynamic programming algorithm 

which takes O(TN2) time. The algorithm works as follows: 

Let S = {s(t)} 1 ≤ t ≤ T  is a state sequence (i.e. the tag sequence) that 

generates W = {w(t)} (the word sequence or observation of the HMM). Then the 

probability that S generates W is, 

(1) (1) 1 ( 1) ( ) ( )

2

( ) ( ) ( )
T

s s s t s t s t t

t

P S b w a b w 



   

To find the most probable sequence, the process starts with 

1 1( ) ( )i ii b w   where 1 ≤ i ≤ N, and then performs the following steps: 

 

 

The most probable sequence at state i in time t is the only consideration 

for each time t and state i. The probability of the most probable sequence is

 1 ( )max i N T i  . The most probable sequence is reconstructed by 

 1( ) arg max ( )Ti Ns T i  and ( 1) ( )t ts t s   for T ≥ t ≥2. 

4.2.3 Smoothing 

It may be the case that all events are not encountered in the limited 

training corpus that we have. The probabilities corresponding to these events 

would be set to zero. However the event may occur during testing. The problem 
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can be solved using different smoothing algorithms. Initially simple add-one 

smoothing was used to estimate the state transition probabilities that are not in the 

training corpora.  Further, linear interpolation of unigram and bigram has been 

implemented for smoothing the state transition probabilities. We smooth the n-

gram state transition probability for various n as follows: 

 

1, 2, ..., ( 1) 1 2 1 1, 2, ..., ( 1)( | ) ( ) ( | ) ... ( | )li i i i i n i i i n i i i i nP t t t t P t P t t P t t t t             

 

The values of 1, 2 , …, n are estimated by deleted interpolation ( Brants, 2000) 

and 
1

1
n

i

i




 .   

When some new text is processed, few words might be unknown to the 

tagger. In our model, words are unknown when they are not included in the 

training text. Initially, we estimated the symbol emission probability by simple 

add-one smoothing. Further, we use suffix information for handling unknown 

words which has been found to work well for highly inflected languages 

(Samuelsson, 1993). The term suffix is a sequence of last few characters of a 

word, which does not necessarily mean a linguistically meaningful suffix. First 

we calculate the probability of a particular tag ti, given the last m letters (li) of an 

n letter word: n 1 n( | ,..., )i mP t l l  .Based on the above hypothesis we calculate the 

symbol emission probabilities using Bayes’ rule: 

 

n 1 n

( | _ ) ( _ )
( _ | )

( )

( | ,..., ) ( _ )

( )

i
i

i

i m

i

P t Unknown word P Unknown word
P Unknown word t

P t

P t l l P Unknown word

P t
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The probability ( _ )P Unknown word  is approximated in open testing text 

by measuring the unknown word frequency. Therefore the model parameters are 

adopted each time an open testing text is being tagged. The probability 

n 1 n( | ,..., )i mP t l l   and the probability ( )iP t  are measured in the training text. We 

conducted different experiments varying the suffix length from 1 to 6 characters. 

It has been observed empirically that the suffix length of 4 gives better results for 

all the HMM based models. Based on our observations, the inclusion of suffix 

essentially captures helps to understand the morphological inflection of the 

surface form word and in Kashmiri most morphological inflections lies in the last 

4 characters of the words.  Finally, each symbol emission probability of unknown 

word has been normalized: 

 

Where, N is the number of known words and ti {T}.  

4.3 Experiments 

We have implemented baseline model to understand the complexity of the 

POS tagging task. In this model the tag probabilities depend only on the current 

word: 

 

The effect of this is that the each word in the test data will be assigned the 

tag which occurred most frequently for that word in the training data. 

1

( | ) ( _ | ) 1
N

iP wi ti P Unknown word t 

1 1

1,

( | )( ... | ... ) i in n

i n

P t wP t t w w
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 The experiments were conducted with five different sizes (100K, 120K, 

140K, 160K and 180K words) of the training data to understand the relative 

performance of the models as we keep on increasing the size of the annotated 

data.   

 We have used Trigrams'n'Tags (TnT) tagger, which is based on a 

supervised trigram HMM with suffix tree information for unknown words. These 

experiments give us some insight about the performance of the tagging task in 

comparison with the order of the Markov model in a poor-resource scenario. 

4.3.1 Training Data 

The training data consists of 2,00,000 manually annotated words. The 

training data has been annotated using a Kashmiri POS tagset as discussed in 

section 3.5 (Table 3.37).The annotated corpus was then used by the tagger for 

creating the language model i.e. lexical and n-gram files were created. It has been 

observed that the corpus ambiguity (mean number of possible tags for each word) 

in the training text is 1.77 which is much larger compared to the figure reported 

for European languages (Dermatas et al.,1995).  

Once the language model was developed, the untagged files were then 

given to the tagger for automatically annotating the corpus. The tagged files 

produced by the tagger are then manually checked for errors.  The files after being 

manually corrected are then added to the training corpus to retrain the tagger in 

order to increase the accuracy of the tagger.   
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4.3.2 Test Data 

The language models have been tested on a set of randomly drawn 50,000 

words distinct from the training corpus. It has been noted that 14% words in the 

open testing text are unknown with respect to the training set, which is also a little 

higher compared to the European languages (Dermatas et al., 1995). 

4.3.3 System Performance 

We define the tagging accuracy as the ratio of the correctly tagged words 

to the total number of words.  

(%) 100
.

Correctly tagged words by the system
Accuracy

Total no of words in the evaluation set
   

 

 

The accuracy of the TnT tagger is checked by comparing two files, one is 

the manually tagged file and another is the file tagged by the tagger. The process 

of retraining the tagger continued till the highest level of accuracy is achieved. 

The schematic diagram given below shows the optimization process of the TnT 

tagger using Kashmiri corpus. 
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Fig. 4.3 Optimization process of TnT using Kashmiri Corpus. 

4.3.4 Evaluation 

The overall accuracy of the tagger depends upon the size of the corpus and 

the accuracy of the tags assigned. Therefore, training corpus should be large and 

the accuracy of tags should be as high as possible.  Generally, the bigger the 
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corpus the higher the accuracy of the training corpus, with the result the overall 

performance of the tagger is better. Tagger’s performance is evaluated at several 

steps. First of all tagging accuracy is determined over ten iterations. All tests are 

performed in partitions i.e. the overall corpus is divided into parts.  

Initially corpus of around 2,00,000 words was taken. Then this corpus was 

divided into two parts out of which 50% was used for training the tagger and the 

remaining 50% of the corpus was used as test data for checking the accuracy of 

the tagger.The test data is unseen during training. By using these proportions, the 

overall accuracy of 62.55% was found. Then separate accuracies of known and 

unknown words were also calculated. In the test data 92.80% of words were 

known and 7.80% of the words were unknown to the tagger. And the accuracy of 

known and unknown words was 87.02% and 38.19% respectively.  Each result 

was obtained by repeating the experiment 5 times with different partitions that is, 

the first partition was taken as 50%- 50% then next partition was 60%- 40% and 

so on and so forth to check the accuracy of the tagger. The results obtained are 

shown in the table given below. 

Corpus Overall Known Words Unknown Words 

Total 

Corpus 

Training 

Data 

Test Data Acc. (%) Errors (%) Acc. (%) Errors (%) Acc.  (%) Errors (%) 

 

 

 

2,00,000 

1,00,000 1,00,000 62.55 37.45 87.02 12.98 38.19 61.81 

1,20,0000 80,000 68.10 31.90 85.22 14.78 40.15 59.85 

1,40,000 60,000 76.39 23.61 84.78 15.22 42.11 57.89 

1,60,000 40,000 85.64 14.36 85.62 14.38 51.68 48.32 

1,80,000 20,000 96.28 03.72 87.62 12.38 52.35 47.65 

Table 4.1: Part-of-speech accuracy of Kashmiri POS tagger. 
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The learning curve for the above results is represented below: 

 

 

The curve given above shows the increase in accuracy as the training data is 

increased.Accuracy for known words is significantly higher than the unknown words. 

4.4 Conclusion 

The tagger developed for Kashmiri is in a preliminary stage as no NLP 

related work (corpus development, tagset development and other related works) 

has been done before in Kashmiri.  
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Fig. 4.4 Kashmiri Corpus: POS learning curve. 



104 
 
 

In this chapter, we have described an approach for automatic stochastic 

tagging of natural language text. The models described here are very simple and 

efficient for automatic tagging even when the amount of available labeled text is 

small. 
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