
Chapter 3

Finite State Automaton: A Tool to

Represent Formal language

3.1 Importance of Finite state automata:

A finite state automaton is an important notion for the study of formal lan-

guages. On one hand, it is a mathematical tool used for implementing reg-

ular expressions and on the other hand it is one of the most noteworthy

devices of computational Linguistics.

Finite state automaton is important in various fields of interest such as

it is one of the most significant tools of computational linguistics. Other

varieties of automata such as finite-state transducers, Hidden Markov Mod-

els, and N-gram grammars are important components of applied linguistics.

In speech recognition and synthesis, machine translation, spell-checking,

and information-extraction, the standard notation for characterizing text se-

quences FSA is used frequently.

An automaton is a mathematical object that takes a word as input and de-

cides either to accept it or to reject it. Since all computational problems are

reducible into the accept/reject question on words, automata theory plays a

28

vital role in computational theory.

Formal language over an infinite set can be represented finitely by FSA. As

mentioned before each model in automata theory plays an important role in

several applied areas. Finite automata are used in text processing, compil-

ers, and hardware design. Besides Computer Science, cellular automata a

type of FSA are used in the field of Biology.

Finite automata, regular grammars and regular expressions are all equiva-

lent ways of describing regular languages. The relation among these four

theoretical constructions is sketched/outlined in the following figure.

Figure 3.1: Relation of Finite automata, Regular grammars, Regular expres-
sions and Regular languages

The automata exist in only one state at a time. They can change from

one state to another when initiated by a triggering event or condition, this

process is called a transition. The automaton is represented as a directed

graph known as state graph which consists of a finite set of vertices known

as nodes, together with a set of directed links between pairs of vertices called

arcs. Vertices are represented by circles and arcs by arrows. An automaton

can also be represented with a state-transition table. The state-transition ta-

ble also represents the start state, the accepting states, and what transitions

29

leave each state with which symbols. There are two parts of Finite state au-

tomata. One part, whose behaviour during recognition is fully determined

by the state it is in and there is one and only one state to which the automa-

ton can transit from its current state is called "Deterministic". The other one,

a "Nondeterministic" finite automaton has the power to be in several states

at one time. This ability is often expressed as an ability to guess something

about its input.

Organization of this chapter is as follows. Section 3.2 goes toward de-

scription of how automata are used to describe regular languages. Section

3.3, an algorithm to construct deterministic finite state automata is pro-

posed. Section 3.4 gives result analysis of the above algorithm. We conclude

the chapter in section 3.5 by summarizing the observations.

3.2 Use of Finite state automata to describe

Regular languages:

Some illustrations about finite state automaton and state-transition table

and their contribution to represent regular languages are given in this sec-

tion.

1. Example

The following (infinite) set gives the language of a singing bird:

tuu!

tuuu!

tuuuu!

tuuuuu!

tuuuuuu!

30

· · ·

The Finite state automata of this infinite input is

Figure 3.2: Finite state automaton for infinite word ‘tuu!’

The loop above the FSA denotes the infinite word ‘u’. The infinite set can

be represented by a state transition table. From this table it is known

about the start state, accepting states, the transitions from one state to

another and about the symbols. There is a colon in the state 4 which

Table 3.1: State transition table for an infinite input ‘tuu!’

input
State t u !

0 1 φ φ
1 φ 2 φ
2 φ 3 φ
3 φ 3 4

4 : φ φ φ

indicate that it is a final state. The symbol φ is used to indicate an illegal

or missing transition. The first row indicates the state 0, when the input

is ‘t’ the state is 1. It is a case of failure if in state 0 the input is ‘u’ or

‘!’. A deterministic finite automaton is defined by [48] the following five

parameters:

Q = q0q1q2...qN−1 a finite set of N states

Σ a finite input alphabet of symbols

31

q0 the start state

F the set of final states, F ⊆ Q

δ(q, i) the transition function or transition ma-

trix between states. Given a state q ∈ Q and an input symbol i ∈ Σ, δ(q, i)

returns a new state q′ ∈ Q. δ is thus a relation from δ : Q × Σ → Q. For

the language of a singing bird automaton in Q = q0q1q2...qN1, Σ = t, u, !,

F = q4 and δ(q, i) is defined by the transition table above.

The following two examples are based on finite inputs. Here there is no

loop in the FSA. In the state transition table here also there is a colon

in the last state, which indicates that it is a final state. The symbol φ is

used to indicate an illegal or missing transition. The first row indicates

the state 0 i.e. the starting state.

2. Example: Let us consider the word ‘hi!’ A Finite State Automaton for this

word is

Figure 3.3: Finite state automaton for the word ‘hi!’

32

Table 3.2: State transition table for a finite input hi!

input
State h i !

0 1 φ φ
1 φ 2 φ
2 φ φ 3

3 : φ φ φ

3. Example: Let us consider another word ‘hello!’ A Finite State automaton

for this word is

Figure 3.4: Finite state automaton for the word ‘hello!’

Table 3.3: State transition table for a finite input ‘hello!’

input
State h e l o !

0 1 φ φ φ φ
1 φ 2 φ φ φ
2 φ φ 3 φ φ
3 φ φ 4 φ φ
4 φ φ φ 5 φ
5 φ φ φ φ 6

6 : φ φ φ φ φ

33

3.3 An Algorithm to construct Deterministic

Finite state automata:

It is discussed earlier how FSA is important for studying formal language,

computational Linguistic and other branches of Computer Science, Biology

etc. An algorithm which gives DFSA of a word will be helpful in those in-

vestigations. In the published paper [16] an algorithm which gives DFSA of

a word is introduced. The following pseudo code gives instantly the deter-

ministic finite state automata of a string.

Algorithm:

1. Initialize a word = ′w′

2. Set len = length of w

3. For i = 0 to len do

4. Draw an Arrow mark −→

5. If (i = len) // finite state

6. Draw two circles [one is inner name it qi, another is outer]

7. else

8. Draw a circle and name it qi

9. If (i 6= 0)

10. Label the Arrow mark with character of the word at ith position

11. End

34

3.3.1 Result Analysis:

The algorithm introduced gives finite state automaton of a word over regular

languages instantly. Initial stage is preceded by an arrow. The final stage

is denoted by double circle. The stages are named as qi. Each stage is

separated by arrow marks. The character of the word at the ith position is

marked just above the arrow mark. Using the above algorithm finite state

automata of some words are given below.

• Example (i): The FSA of the word ‘abcd’ is

Figure 3.5: Finite state automaton of the word ‘abcd’

• Example (ii): The FSA of the word ‘book’ is

Figure 3.6: Finite state automaton of the word ‘book’

• Example (iii): The FSA of the word ‘technology’ is

35

Figure 3.7: Finite state automaton of the word ‘technology’

3.4 Conclusion of the Chapter:

A finite state automaton is a very important notion for the study of regular

languages. In this chapter finite state automata and state transition table

are discussed in the context of regular languages. An algorithm to construct

deterministic finite state automata is introduced. This algorithm gives finite

state automaton of a word over regular languages instantly. Initial and final

stages are distinct. The stages are named as qi. The stages are separated by

arrow mark. The character of the word at the ith position is marked above

the arrow mark.

36

