
Chapter 1

Introduction

Formal languages are inevitable parts of Computer Science, Mathematics

and Linguistics. Formal languages have their roots in Mathematics, and es-

pecially in symbolic logic. They are used as various codes needed in data

encryption, transmission, and error correction. Their importance in various

fields now-a-days is due to Noam Chomsky’s investigation [25, 26, 27, 29],

Marcel-Paul Schützenberger’s algebro-combinatorial approach in formal lan-

guage theory and works of Arto Salomaa [73]. In this respect the effect

of programming languages should also be mentioned. The basis of every

programming language lies in formal language theory. Since programming

languages are flourishing day by day, together with them formal language is

also attaining its importance in the field of Computer Science.

In this present work words over formal languages are studied using various

mathematical tools or branches. As for example, matrix, theory of equations,

analytical geometry, distance formulae, functions etc. are used . Various al-

gorithms are also generated. Formal words are also investigated using finite

state automata.

Formal language is a set of sequences of symbols that may be guarded by

rules that are specific for a particular formal language. It is a model which

1

can be used for both creation and identification of strings of a formal lan-

guage if and only if those are the strings of the formal language. The formal

language theory mostly deals with syntactical aspects of such languages. In

Computer Science, formal languages are used as the basis for defining pro-

gramming languages. In mathematical logic, formal languages are used to

represent the axioms. It is believed that all the branches of Mathematics can

be reduced to some grammatical operation of formal languages.

Finite-state automata are very constructive mathematical models of com-

putation used to design both computer program and sequential logic cir-

cuits. Those can be in one or a finite number of states. The automata are

in only one state at a time. They can be changed from one state to another

when initiated by a triggering event or condition, this is called a transition.

A particular FSA(Finite-state automaton) is defined by a list of its states, and

the triggering condition for each transition. The automaton is represented

as a directed graph known as state graph which consists of a finite set of

vertices known as nodes, together with a set of directed links between pairs

of vertices called arcs. Vertices are represented by circles and arcs by arrows.

We can also represent an automaton with a state-transition table. As in the

graph notation, the state-transition table represents the start state, the ac-

cepting states, and what transitions leave each state with which symbols.

Finite state automata are divided into two parts. One is deterministic and

the other is nondeterministic.

Deterministic FSA (DFSA) - There is one and only one state to which the

automaton can have transition from its current state . Its behaviour during

recognition is fully determined by the state it is in.

Nondeterministic FSA (NFSA)- A Nondeterministic finite automaton has the

power to be in several states at once.

This distinction is relevant in practice, but not in theory, as there is an al-

2

gorithm namely the power set construction which can transform any NFSA

into a more complex DFSA with identical functionality.

From the computational point of view, the use of finite-state machines is

mainly motivated by considerations of time and space efficiency. Time ef-

ficiency is usually achieved by using deterministic automata. The output

of deterministic machines depends, in general linearly, only on the input

size and can therefore be considered as optimal from the point of time and

space efficiency. Space efficiency is achieved with classical minimization al-

gorithms for deterministic automata.

Parikh mapping or Parikh vector first introduced in [69] by R.J. Parikh

(1966) plays a very significant role in the theory of formal languages. With

the help of this tool properties of words can be expressed numerically. The

Parikh vector is a mapping Ψ : Σ∗ → Z× Z× · · · × Z where

Σ = {a1, a2, a3, · · · , an} and Z is the set of natural numbers including 0, such

that for a word w in Σ∗, Ψ(w) = (|w|a1 , |w|a2 , |w|b3 · · · |w|an) with |w|ai denot-

ing the number of occurrences of the letter ai ∈ w . For example, for the

word w = aabbc the Parikh vector is (2,2,1). The notion of Parikh matrix

introduced in 2001 by Mateescu et al. [61] is an extension of Parikh map-

ping. A word is a finite or infinite sequence of symbols taken from a finite

set called alphabet. A Parikh matrix can be associated with every word over

an ordered alphabet and it is a triangular matrix. All the entries of the main

diagonal of this matrix is 1 and every entry below the main diagonal has the

value 0 but the entries above the main diagonal provide information on the

number of certain sub-words in w.

Any word w over the nth order alphabet Σ = {a1, a2, a3, · · · , an} has a unique

Parikh Matrix. This matrix is given by ΨMn(w).

3

ΨMn(w)=

1 |w|a1 |w|a1a2 · · · |w|a1a2···an−2 |w|a1a2···an−1 |w|a1a2···an

0 1 |w|a2 · · · |w|a2···an−2 |w|a2···an−1 |w|a2···an
...

...
... · · · ...

...
...

...
...

... · · · ...
...

...

0 0 0 · · · 1 |w|an−1 |w|an−1an

0 0 0 · · · 0 1 |w|an

0 0 0 · · · 0 0 1


(n+1)×(n+1)

Where |w|ai is the number of occurrences of ai in the word. Here i ∈ [1, n].

An interesting aspect of the Parikh matrix is that it has the classical Parikh

vector as the second diagonal above the main diagonal. As such Parikh

matrix of a word gives information about Parikh vector of the same.

Natural language is an integral part of our day-to-day lives. Now-a-days

some machines have been developed which acts with voice command. So,

by using this type of machines, people having little knowledge about the

machines can operate them. The aim of Natural language processing is, in

a sense, to make such machines . By understanding language processes in

procedural terms, we can give computer systems the ability to generate and

comprehend natural language. This would make it possible for computers

to perform linguistic tasks like translation, process textual data and make it

much easier for people to access computer-stored data.

1.1 Motivation:

Formal language is a very important topic for Computer Science, Mathe-

matics and Linguistics. It is used to solve various mathematical problems.

The use of formal language in Computer Science is deeply appreciated in

making programming language. Some investigation in the field of formal

4

language may benefit all the three subjects- Mathematics, Computer science

and Linguistics.

Parikh matrix is a tool to arithmatise formal alphabets and words. Al-

though Parikh Matrix of a word is achieving better results, it still faces some

challenging problems, such as it is not injective. Two words may have the

same corresponding Parikh matrix, but two words with the same Parikh vec-

tor have in many cases different Parikh matrices and thus the Parikh matrix

gives more information about a word than the Parikh vector does. To over-

come all these shortcomings, Parikh matrix has become a research interest

in related fields in recent years. In recent decades scientists have developed

many techniques to solve complex problems of words using Parikh matrix.

In many branches of Mathematics, in geometry as well as in real analysis,

complex analysis, functional analysis, topology etc. it has been found ex-

tremely convenient to have a notion of distance which is applicable to the

elements of abstract sets. In this present work one kind of distance named

as Stepping distance is introduced in Parikh matrix .

A finite state automaton is associated with state graph, whose nodes rep-

resent possible system of states, and whose arrows represent possible tran-

sitions from state to state. Every finite or infinite word can be represented

distinctly by this type of graph. Finite-state automata have been used in

many areas of computational linguistics. Their use can be justified by both

linguistic and computational arguments. The automaton recognizes a set of

strings.

The usefulness of an automaton for defining a language is that it can

express an infinite set in a closed form. They often lead to a compact rep-

resentation of lexical rules, or idioms and words, that appears as natural to

linguists. Graphic tools also allow one to visualize and modify automata.

This helps in correcting and completing a grammar.

5

From the computational point of view, the use of finite-state machines

is mainly motivated by considerations of time and space efficiency. Time

efficiency is usually achieved by using deterministic automata. The output

of deterministic machines depends only on the input size. Space efficiency is

achieved with classical minimization algorithms for deterministic automata.

That is why in theoretical computer science finite automata are profoundly

used. Finite-state automata the inevitable part of computational NLP, are

used everywhere in the field of part-of-speech tagging, speech recognition,

dialogue understanding, text-to-speech, and machine translation. Most of

the research works of computational NLP are going on in these fields.

1.2 Statement of the problem:

Being the inevitable part of Computer Science, Mathematics and Linguis-

tics the formal languages have become a subject of much interest among

the practitioners of formal languages as well as researchers in this field.

While going through the review of literature on this branch of study, it is ob-

served that using various mathematical tools words over formal languages

can be studied more robustly. Accordingly arithmatisation of formal lan-

guages presents itself as a matter of further in-depth study. It is identified

that Parikh matrix, finite state automata, analytical geometry, distance for-

mula can be befittingly utilised to formal languages to make it more arithma-

tised as well as more attractive. It is also observed that some algorithms can

also be formed for finite state automata and for Parikh matrices of words.

M-ambiguous words can also be found out from a given Parikh matrix by an

algorithm.

Further, another matter of interest came to light that the relation be-

tween formal languages and natural languages can be established using

6

Parikh matrix.

All these matters naturally involve a thoughtful in-depth study on the

areas presented in earlier paragraphs. The present study aims at throwing

some light on these areas for enriching the knowledge set of formal lan-

guages.

1.3 Objectives:

The objectives of the present study are as follows:

1. To investigate on words over formal languages.

2. To make some algorithm to represent formal Languages in terms of finite

state automata.

3. To investigate on Parikh matrices of words.

4. To make some algorithms on Parikh matrices of words for solving some

existing problems.

5. To enrich the relation between the natural languages and formal lan-

guage.

1.4 Data and Methodology:

Investigations are done on formal language, finite state automata, Parikh

matrix and interrelation of natural languages with formal language. Im-

portance of finite state automata in various fields of interest is analysed.

Algorithms developed for finite state automata are studied and a new al-

gorithm is developed. The definitions for various terms on Parikh matrices

are generalised. Some theorems on Parikh matrices are investigated and

7

extended to higher ordered alphabets. Some algorithms are generated for

solving various challenges of Parikh matrices. For the study of natural and

formal languages along the above mentioned lines, various mathematical

notions and coding have been applied as and when necessitated.

1.5 Preliminary:

Some definitions used in present study are as under:

Formal Language: It is a set of sequences of symbols that may be guarded

by rules that are specific for a particular formal language.

Formal grammar: A formal grammar G consists of [26]:

1. A finite set of nonterminal symbols N , that is disjoint with the strings

formed from G.

2. A finite set of terminal symbols T , that is disjoint from N .

3. A finite set P of production rules (T ∪N)∗N(T ∪N)∗ → (T ∪N)∗ i.e. (left-

hand side → right-hand side) where each side consists of a sequence of

these symbols,

4. A start symbol S.

Regular expression: A regular expression, first developed by Kleene in 1956

[55] is a formula in a language that is used for specifying simple classes of

strings. A string is any sequence of alphanumeric characters like letters,

numbers, spaces, tabs, and punctuation.

Regular language: The class of languages that is definable by regular ex-

pressions are regular languages. Given a finite alphabet Σ, the following

constants are defined as regular languages:

1. Empty set φ: denoting the set φ.

8

2. Empty string ε: denoting the set containing only the ‘empty’ string,

which has no characters at all.

3. Literal character ′x′ in Σ: denoting the set containing only the charac-

ter ′x′.

The following operations over given regular languages L and M are defined

to produce more regular languages:

1. Concatenation: LM denoting the set {αβ : α ∈ L and β ∈ M}. α in

set described by language L and β in set described by M . For example

{abc, d}{e, fg} = {abce, abcfg, de, dfg}.

2. Alternation: L|M denoting the union of sets described by L and M . For

example, if L describes {ab, cd} and M describes {cd, fg, h} , language

L|M describes {ab, cd, fg, h}.

3. Kleene star: This is the set of all strings that can be made by concatenat-

ing any finite number (including zero) of strings from set described by L.

For example, {‘0′, ‘1′}∗ is the set of all finite binary strings (including the

empty string),and {ab, c}∗ = {ε, ab, c, abc, abab, cab, cc, ababab, abcab, · · · }.

Turing Machine: A Turing machine is a device that manipulates symbols on

a strip of tape according to a table of rules.

Chomsky hierarchy: The Chomsky Hierarchy, as originally defined by Noam

Chomsky [25, 27], comprises four types of languages and their associated

grammars and machines. The Chomsky hierarchy consists of the following

levels:

1. Type-0 grammars or unrestricted grammars : They are the superset of

all formal grammars. They generate those languages if and only if the

languages can be recognized by a Turing machine. These languages are

9

also known as the recursively enumerable languages. The example is any

computable function.

2. Type-1 grammars or context-sensitive grammars: They generate the context-

sensitive languages. These grammars have rules of the form αAβ → αγβ

with A a nonterminal and α, β , and γ strings of terminals and nonter-

minals. The strings α and β may be empty, but γ must be nonempty.

The rule S → ε where S is the start symbol and ε is the empty string is

allowed if S does not appear on the right side of any rule. The corre-

sponding machine is linear bounded automaton. The example is anbncn.

3. Type-2 grammars or context-free grammars: They generate the context-

free languages. These are defined by rules of the form A → γ with

A a nonterminal and γ a string of terminals and nonterminals. These

languages are exactly all languages that can be recognized by a non-

deterministic pushdown automaton. Context-free languages are the the-

oretical bases for the syntax of most programming languages. The corre-

sponding machine is nondeterministic pushdown automaton. The exam-

ple is anbn.

4. Type-3 grammars or regular grammars: They generate the regular lan-

guages. Such a grammar restricts its rules to a single nonterminal on the

left-hand side and a right-hand side consisting of a single terminal, possi-

bly followed (or preceded, but not both in the same grammar) by a single

non terminal. The rule S → ε is also allowed here if S does not appear on

the right side of any rule. These languages are exactly all languages that

can be decided by a finite state automaton. The corresponding machine

is deterministic or nondeterministic finite-state acceptor. The example is

a∗.

10

Figure 1.1: Chomsky hierarchy

Finite state automata: A finite-state automaton or a finite-state ma-

chine is a mathematical tool used to describe processes involving inputs and

outputs. It is a mathematical model used to design computer programs and

digital logic circuits.

State transition table: An automaton can be represented with a state-

transition table. Like finite state automata, the state-transition table repre-

sents the start state, the accepting states, and what transitions leave each

state with which symbols [16].

Input word: An automaton reads a finite string of symbols a1, a2, a3, . . . , an ,

where ai ∈ Σ, which is called an input word. The set of all words is denoted

by Σ∗.

Run: A run of the automaton on an input word w = a1, a2, a3, . . . , an ∈ Σ,

is a sequence of states q0, q1, q2, . . . , qn, where qi ∈ Q such that q0 is the start

state and qi = δ(qi−1, ai) for 0 < i ≤ n. In words, at first the automaton

is at the start state q0, and then the automaton read symbols of the input

word in sequence. When the automaton reads symbol ai it jumps to state

qi = δ(qi−1, ai) and qn is said to be the final state of the run.

Deterministic and Nondeterministic finite state automata: Finite state

automata are divided into two parts- Deterministic and Nondeterministic fi-

11

nite state automata. In deterministic automata, the transition from one state

to another is unique for each possible input. In non-deterministic automata

the transition from one state to another is not unique; an input can lead to

one, more than one or no transition for a given state.

Throughout this study Z will denote the set of integers i.e. the set of natural

numbers including 0. Some definitions are given below based on the study

done in [19, 17, 18, 15]:

Ordered alphabet: An ordered alphabet is a set of symbols

Σ = {a1, a2, a3, · · · , an} where the symbols are arranged maintaining a rela-

tion of order (<) on it. For example if a1 < a2 < a3 < · · · < an then we use

notation: Σ = {a1, a2, a3, · · · , an}.

Word: A word is a finite or infinite sequence of symbols taken from a finite

set called an alphabet. Let Σ = {a1, a2, a3, · · · , an} be the alphabet. The set

of all words over Σ is Σ∗. The empty word is denoted by λ.

|w|ai : Let w ∈ Σ = {a1, a2, a3, · · · , an} be a letter. The number of occur-

rences of ai in a word w ∈ Σ∗ is denoted by |w|ai.

Sub -word: A word u is a sub- word of a word w, if there exist words

x1 · · ·xn and y0 · · · yn, (some of them possibly empty), such that u = x1 · · ·xn

and w = y0x1y1 · · ·xnyn. For example if w = abaabcac is a word over the

alphabet Σ = {a, b, c} then baca is a sub-word of w. Two occurrences of a

sub-word are considered different if they differed by at least one position of

some letter. In the word w = abaabcac, the number of occurrences of the

word baca as a sub-word of w is |w|baca = 2.

prefix and suffix of a word: Prefix: If w = uy for some y, then u is a prefix

of w. Suffix: If w = xv for some x, then v is a suffix of w.

Parikh vector: The Parikh vector is a mapping Ψ : Σ∗ → Z×Z×· · ·×Z where

Σ = {a1, a2, a3, · · · , an} and Z is the set of integers i.e. natural numbers in-

cluding 0, such that for a word w in Σ∗, Ψ(w) = (|w|a1 , |w|a2 , |w|b3 · · · |w|an)

12

with |w|ai denoting the number of occurrences of the letter ai ∈ w . For

example, for the word w = abaabcac the Parikh vector is (4, 2, 2).

Triangle matrix: A triangle matrix is a square matrix m = (mi,j)1≤i,j≤n such

that

1. mi,j ∈ Z(1 ≤ i, j ≤ n)

2. mi,j = 0 for all 1 ≤ j ≤ i ≤ n

3. mi,i = 1(1 ≤ i ≤ n).

Parikh matrix: Let Σ = {a1 < a2 < a3 < · · · < an} be an ordered alphabet,

where n ≥ 1. The Parikh matrix mapping, denoted by ΨMn, is the morphism

ΨMn : Σ∗ →Mn+1 defined as follows:

if ΨMn(aq) = (mi,j)1≤i,j≤n+1 then for each 1 ≤ i ≤ (n+1), mi,i = 1, mq,q+1 = 1

and all other elements of the matrix ΨMn(aq) are zero.

Parikh matrix of a word: Let Σ = {a1 < a2 < a3 < · · · < an} be an nth

ordered alphabet. The Parikh matrix of a1, a2, a3, · · · , an are as follows:

ΨMn(a1)=



1 1 . . . 0 0

0 1 . . . 0 0

...
... . . .

...
...

0 0 . . . 1 0

0 0 . . . 0 1


(n+1)×(n+1)

,

ΨMn(a2) =



1 0 . . . 0 0

0 1 1 . . . 0

...
... . . .

...
...

0 0 . . . 1 0

0 0 . . . 0 1


(n+1)×(n+1)

,

13

. . . , ΨMn(an) =



1 0 . . . 0 0

0 1 . . . 0 0

...
... . . .

...
...

0 0 . . . 1 1

0 0 . . . 0 1


(n+1)×(n+1)

.

Any word w over the nth order alphabet has a unique Parikh Matrix. This

matrix is given by ΨMn(w) =

1 |w|a1 |w|a1a2 · · · |w|a1a2···an−2 |w|a1a2···an−1 |w|a1a2···an

0 1 |w|a2 · · · |w|a2···an−2 |w|a2···an−1 |w|a2···an
...

...
... · · · ...

...
...

...
...

... · · · ...
...

...

0 0 0 · · · 1 |w|an−1 |w|an−1an

0 0 0 · · · 0 1 |w|an

0 0 0 · · · 0 0 1


(n+1)×(n+1)

.

M- ambiguous words: Two words α, β ∈ Σ∗, (α 6= β) over the same alpha-

bet Σ may have the same Parikh matrix. Then the words are called amiable

or M-ambiguous.

The words baaabaa and ababaaa have the same Parikh matrix


1 5 3

0 1 2

0 0 1


So these two words are amiable.

M- unambiguous words: A word w is said to be M-unambiguous if there is

no word w′ for which ΨMn(w) = ΨMn(w
′
).

Ratio property of words over ternary sequence: Let Σ = {a < b < c} be

a ternary alphabet. Two words w1 < w2 over Σ = {a < b < c} are said to

satisfy the ratio property, written w1 vr w2,

14

if ΨM3(w1) =



1 p1 p1,2 p1,3

0 1 p2 p2,3

0 0 1 p3

0 0 0 1


4×4

and ΨM3(w2) =



1 q1 q1,2 q1,3

0 1 q2 q2,3

0 0 1 q3

0 0 0 1


4×4

satisfy the conditions pi = s.qi, (i = 1, 2, 3), pi,i+1 = s.qi,i+1, (i = 1, 2) where

s is a constant.

Weak-ratio property of words over ternary sequence: Let Σ = {a < b <

c} be a ternary alphabet. Two words w1 < w2 over Σ = {a < b < c} are said

to satisfy the weak ratio property, written w1 vwr w2,

if ΦM3(w1) =


p1 p1,2 p1,3

p2,1 p2 p2,3

p3,1 p3,2 p3


3×3

and ΦM3(w2) =


q1 q1,2 q1,3

q2,1 q2 q2,3

q3,1 q3,2 q3


3×3

and satisfy the condition pi = s.qi, (i = 1, 2, 3), where s, (s > 0) is a constant.

15

