Chapter 4

37

4 STEMMING

Stemming is the term used as a tool for information retrieval and linguistic
morphological analysis to describe the process for reducing inflected (or
sometimes derived) words to their word stem, based on root form generally
a written word form. The stem sometimes don't matches to the morphological
root of the word; it is usually sufficient that related words map to the same
stem, even if this stem is not in itself a valid root. Computer Science
department is studding different algorithms of stemming since the 1960s.
Conflation is a process of treating words with the same stem as synonyms
as a kind of query expansion. Many search engines use this conflation.

4.1 Types of Stemming

There are several types of stemming algorithms [Kashif Riaz 2010] which
are mentioned below; each of these groups has a typical way of finding
the stems of the word variants.

Brute Force Algorithms:

In Brute force stemmers, a lexicon which contains a relation between root
form and inflected form. To stem a word, the lexicon is queried to find a
matching inflection. If a matching inflection is found, the associated root
form is returned.

Suffix Stripping Algorithms:

Suffix stripping algorithms based on a typically small list of "rules" stored
in an array or a lexicon. This list provides a path for the algorithm to find
out the root form of a given input word.

Lemmatization Algorithms:

This process involves first determining the part of speech category (e.g.:
noun, verb, adjective, adverb etc) of the input word, and applying different
normalization rules for each part of speech category. The part of speech

38

is first detected and finally the stemming rules change depending on word's
part of speech category.

Stochastic Algorithms:

In this method machine first trains the inflected word along with root word
and produces some probabilistic internal rule set. Based on these internal
rules machine finds out the most probable root word from a given input
word and most of the cases it removes the affixes from the word.

Hybrid Approaches:

As the name clearly suggests that these methods are combination of two or
more of the approaches described above. A simple example is a suffix tree
algorithm which first consults a lookup table using brute force.

Affix Stemmers:

In linguistics concern the term affix refers to either prefix or suffix. In
addition to dealing with only suffixes, several approaches are there which
discussed in literature survey. If many of the approaches mentioned above
can strip prefix as well as suffix then they are called affix stemmer.

Matching Algorithms:

These types algorithm use a stem database (for example a set of documents
that contain stem words). These stems are not necessarily valid words
themselves (but rather common sub-strings). In order to stem a word the
algorithm tries to match it with stems from the database, applying various
constraints, such as on the relative length of the candidate stem within the
word.

4.2 System Description

For explaining the proposed system three lexicons are taken into consideration:
prefix, suffix, root lexicon and a set of hand written rules for prefix and
suffix stripping, especially for inflected and derived word. Lexicon means

39

dictionary, where various entries of words of any language are included.
Words in the lexicons are manually created.

Suffix Lexicon

Suffix means those words that come after the root or stem. Approximately
120 suffixes are taken into consideration.

Prefix Lexicon

Prefix means those words which are added to the front of the word. Around
25 words are taken to build prefix lexicon.

Root Lexicon

Root lexicon contains over 1000 words.

4.3 Proposed Algorithm for STEMMER

Since domains are taken from Nepali corpus so obviously these texts will
have sufficient number of Nepali punctuations, Nepali and English digits and
Single-letter-words. But while developing a Stemmer we need not take these
unnecessary characters into consideration .So before doing actual stemming
it will be efficient to remove these characters step by step and this process
is called cleaning. This will be the pre-processing steps of a good Stemmer.

Tokenization

Tokenization is the process of breaking the sentences as well as the text
file into word delimited by white space or tab or new line etc. Outcome
of this tokenization phase is a set of word delimited by new line.

Punctuation Removal

A document may contain lots of Nepali punctuations in the text. These
characters have no importance for stemming.

40

Digit Removal

In general Nepali text file may contain Nepali as well as English digits.
But as meaningful Nepali words do not contain digits.

Single Letter-Word Removal

There exist a lot of words having a single letter. Most of these Single-
Letter-Words are Stop-Words (those words which have extremely high term
frequency in a corpus are known as Stop Words). As a step of stemming
the stop-words need to be removed before further processing. So the Single-
Letter-Words are removed in this phase.

For above all pre-processing steps list of digits both English and Nepali,
list of stop words and list punctuations are maintained in a text file.

Lexical Look up Approach

After processing all the above steps, words (tokens) are ready for stemming.
The stemming system was developed using lexical look up based approach
using three different lexicons suffix, prefix and root. The system mainly
works in two steps:

Firstly the input word is queried in the root lexicon; if it is found, then
it is considered as a root word e.g. "HTHI". Secondly if it fails then the
system queried into prefix and suffix lexicon for affixes, if it is present
then its rule number is retrieved and do affix striping according to rule
which were written in the lexicon against retrieving rule number e.g. in
the word "fa<ef", one prefix "fd" and one suffix "<"is present. Rule for
"fg" prefix is strip off "fd" from the input word "fogell” and keep it same
but for "< suffix, strip off "<T" from the input word "fac=f" replace "<7"
by "$". If the root word is found after stripping suffix/ prefix or both
then the system will store root word along with its constituents parts i.e.
prefix and suffix into output file. If one or more prefix/suffix present and
the root word is not found then try combining the suffix/prefix one by one
with the remaining part of the word and again search in the root lexicon
for the root. This process will be continuing until it finds the root word
or its prefix/suffix lists are empty otherwise the system will keep the word

41

as it is and store the word into output file.

Lexicons are in column format, i.e.

by sentence fashion along with serial numbers; a separator

the root lexicon:

2wl
ITS12
X3
Pil4
IS5
Suffix Lexicon

Sl EORIE
3T12 RUECHP)
HETI3 313

A4 AddA<hl4
315 EEIESK]

Prefix Lexicon

Root Lexicon

a word per line in a sentence
is used to
separate the word and number. Following are samples of prefix, suffix and

All the root, suffix and prefix lexicons are stored into hash table with
two field's key and value. The key of the hash function was generated
from the summation of the ASCII values of each character of every suffix,
prefix and root. Using this key, probable position was generated to store
each suffix, prefix and root. If there was a previously stored suffix, prefix
and root in that position, then collision occurred. In case of collision the
next free space was searched and the suffix, prefix and root, were stored in
that position. We found that the collision is minimum here [M. N. Karthik,
Moshe Davis 2004].

The architecture of the core engine of the stemmer is presented below:

Table 6: Test Cases

Test No Domain No.of Words
1 Economics 400
2 Health 600
3 political 800

42

Input

4

Input Token

I Suffix, prefix

. Store suffix

& sirip

e
-

YES

Store wefix
& strip

YES

present

@

HO

I Suffix

Present
HO

Is Prefix

Presert
HO

Hot Recognized
with probyable

J/ YES

Root YWord with
shored prefix and
suffix —>

prefin amdd suffix

=N End <

Fig 2:

Architecture of Stemmer

43

4.4 Experimental Results and Discussion

System performance was evaluated based on different domains of news.
These domains include news on Economics, Health and Political. The
system was evaluated on 1,800 words. The overall accuracy achieved
by the system is 90.48%. Three test data sets were taken from original
corpus for testing, which was built by Technology Development for Indian
Languages (TDIL) [Kashif Riaz 2010]. The following table shows the
different test cases for testing:

The evaluation metrics for the data set is precision, recall and F-Measure.
These are defined as following:-

Recall (R) = Total number of words stemmed by the system / Total
number of words.

Precision (P) = Total number of words correctly stemmed by the system
/ Total number of words.

F — Measure = (* +1)PR/(B*R + P)

Where [is the weighting between precision and recall and typically

B=1

Table 7: Accuracy of System on different Test Cases

Data Set No. Recall Precision F-Measure
Data Set-1 92.35% 89.95% 91.13%
Data Set-2 91.56% 88.80% 89.82%
Data Set-3 91.78% 89.26% 90.50%

Accuracy measurement of stemmer

During stemming process one text file is generated for each test case:
stem.txt. If the system stems the word then it will store its root part
into stem.txt otherwise store the word as it is and print them in the

44

stem.txt. From this file we can get total number of stem as well as
unknown words. Also in case of getting total number correct root word,
one small matcher program is written which sequentially reads stem.txt and
root lexicon. The correct root words are those which match in both the
files and the remaining words are unknown words. The program will match
word by word and increment the count if the word matched in both the files.

The overall accuracy is measured by calculating the mean of three F-
measure values. F-measure which combines the precision and recall to give
a single score. It is defined to be the harmonic mean of the precision and
recall.

45

