
86

Chapter 6 :FINITE STATE MORPHOLOGICAL ANALYSIS

WITH XFST TOOL

Implementation of morphological analysis by compiling regular expressions into

finite state networks is purposely defining a data structure rather than procedural

programs. The skeleton for morphological analysis using finite-state technique has

been the construction of lexical transducers. Karttunen, Kaplan and Zaenen 1992,

described the standard way of constructing lexical transducers, and it consists of –

(1) a finite-state source lexicon that defines the set of valid lexical forms of the

language (possibly infinite), and is a specification for the morphotactics of a category

of words; and

(2) a set of finite state rules that assign the proper surface realization to all lexical

forms and morphological categories of the language. The rules are compiled to

transducers (called rule transducers) and merged with the source lexicon using

intersection and composition operation. Every Rule transducer represents a single

spelling change rule.

So a lexical transducer is a set of transducers for orthographical rules with a

transducer encoding the source lexicon. The lexical transducers encodes the relation

between the inflected surface forms of root/stems and their corresponding lexical

forms or lemmas, each containing a citation form of the word followed by a part-of

speech tag.

xfst uses a built-in stack to store and manipulate networks. The operations, features,

and other characteristics of stack such as Last-In, First-Out (LIFO) data structure that

stores networks, pushing and popping of networks on top of the stack are supported

here. At the time xfst is launched, the stack is empty.

In defining natural-language morphotactics, union and concatenation are the basic

operations required to perform on the source lexicon of different category of words.

87

Variation rules and long distance- dependency filters are applied using composition

operation (Kenneth R. Beesley, 1998). The current chapter describes the creation and

implementation of the source lexica of different Manipuri word categories and

compilation of the regular expression for orthography or the spelling change rules for

the various morphophonemic alternations.

6.1 MANIPURI SOURCE LEXICON

For implementation of the morphotactics, Manipuri source lexicon has been divided

into two major sub-lexicons (or continuation classes in xfst terminology)- nominal

and verbal lexicon. Again the nominal category sub-lexicon has been divided into

eight categories – animate free nouns, inanimate free nouns, wh-words, personal

pronouns, demonstrative pronouns, kinship terms, animal body parts, derived nouns

(from verb roots), and numerals. Similarly the verb source lexicon has been divided

into three sub categories- action, process and stative.

The source files have been written using Notepad text editor. Our source lexicon entry

consists of root- both free and bound forms, the affixes in its lexical and surface form,

muticharacter symbols and other morphemes like particles, etc. for each nominal category and

their in the xfst regular expression notation. The following is the source lexicon for animate

nouns defined in the xfst notation (see Table 5-13 for noun morphotactics) written in a text

file, named NF_Animate-lex.txt.

Multichar_Symbols

+NOUN +SG +MASC +PL +FEM +NOM +GEN +ASS +ABL +COP +CON-W +CON-AL +CON-AN +DEF-P

+QM +EMP-S-P +EXC-S-P +EMP-ONLY-P

Lexicon Root

 Masculine;

 Feminine;

Lexicon Feminine

 +NOUN+FEM:0 #;

 +NOUN+FEM:0 NUMBER;

Lexicon Masculine

 +NOUN+MASC:0 #;

 +NOUN+MASC:0 NUMBER;

Lexicon NUMBER

 +SG:0 #;

 +SG:0 INFLECTION;

 +PL:��� INFLECTION;

Lexicon INFLECTION

88

 Nominative;

 Genitive;

 Associative;

 Ablative;

 Accusative;

Lexicon Nominative

 +NOM:� #;

 +NOM:� Connectives;

 +NOM:� Accusative;

 +NOM:� Copula;

 +NOM:� Interrogative;

 +NOM:� Definitive;

 +NOM:� Emphatic-Self;

 +NOM:� Exclusive-Self;

 +NOM:� Emphatic-Only;

Lexicon Genitive

 +GEN:�� #;

Lexicon Associative

 +ASS:� #;

Lexicon Ablative

 +ABL:2�� #;

Lexicon Accusative

 +ACC:� #;

Lexicon Connectives

 +CON-W:� #;

 +CON-AL:6 #;

 +CON-AN:�� #;

Lexicon Copula

 +COP:�� #;

Lexicon Interrogative

 +QM:) #;

Lexicon Definitive

 +DEF-P:�2 #;

Lexicon Emphatic-Self

 +EMP-S-P:#� #;

Lexicon Exclusive-Self

 +EXC-S-P:2 #;

Lexicon Emphatic-Only

 +EMP-ONLY-P:দমক #;

END

Compilation of the text file into a finite-state network after invoking lexc is done at

the lexc prompt, by entering

lexc> compile-source NF_Animate-lex.txt

The following is a glimpse of lexc interface after the above command is executed.

89

The compiled lexc file is saved as an fst file by the following command from the lexc

prompt save -source NF_Animate-lexc.fst.

All the source lexica are compiled as FST network from the lexc interface with a .fst

extension file. These FST files are loaded into the stack from the xfst interface. The

command and the xfst interface for loading the NF_Animate-lex.fst file is shown

below:

 * Finite-State Lexicon Compiler 3.7.14 (2.25.11) *

 * created by *

 * Lauri Karttunen and Todd Yampol *

 * Copyright ┬⌐ 1993-2014 by the Xerox Corporation. *

 * All Rights Reserved. *

Input/Output --

 Source: compile-source, merge-source, read-source, result-to-source,

 save-source.

 Rules: read-rules.

 Result: merge-result, read-result, save-result, source-to-result.

 Properties: add-props, reset-props, save-props.

Operations --

 Composition: compose-result, extract-surface-forms, invert-source, invert-result.

 Checking: check-all, lookdown, lookup, random, random-lex, random-surf.

 Switches: ambiguities, duplicates, failures, obey-flags, print-space, recode-cp1252, quit-on-fail, show-

flags, singles, time, utf8-mode.

 Scripts: begin-script, end-script, run-script.

Display ---

 Misc: banner, labels, props, status, storage.

 Help: completion, help, history, ?.

Type 'quit' to exit.

Starting in utf8-mode.

lexc> compile-source NF_Animate-lex.txt

opening "NF_Animate-lex.txt"

Opening 'NF_Animate-lex.txt'...

Root...9, Feminine...2, Masculine...2, NUMBER...3, INFLECTION...5, Nominative..9, Genitive...1,

Associative...1, Ablative...1, Accusative...1, Connectives...3, Copula...1, Interrogative...1, Definitive...1,

Emphatic-Self...1, Exclusive-Self...1, Emphatic-Only...1Building lexicon...Minimizing...Done!

SOURCE: 3.3 Kb. 25 states, 50 arcs, 288 paths.

lexc>

lexc> save-source NF_Animate-lex.fst

opening "NF_Animate-lex.fst"

Opening 'NF_Animate-lex.fst'...

Done.

lexc>

90

Implementation for the compilation of the Adjective lexicon as per the Adjective

morphotactics is shown below:

Multichar_Symbols

+FORM +NZR +INC +PRGASP +HAB +PROS +PERF +DEST +EVI +DCT +POT +PERF +DIR-UP

+DIR-OUT +DIR-IN +NG1 +NG2 +NG3 +NG4 +DUBT

Lexicon Root

 VR;

 Prefix;

Lexicon VR

 Verbs;

Lexicon Verbs

 +VR:0 Suffixes;

Lexicon Suffixes

 +INC:রকরকরকরক NG2;

 +INC:রকরকরকরক NG3;

 +INC:রকরকরকরক NG4;

 +INC:রকরকরকরক NZR;

 +NOM:নননন NG2;

 +NOM:নননন NG3;

 +NOM:নননন NG4;

 +NOM:নননন NZR;

 +HAB:গনগনগনগন NG2;

 +HAB:গনগনগনগন NG3;

 +HAB:গনগনগনগন NG4;

 +HAB:গনগনগনগন NZR;

 +EVI:রমরমরমরম NG2;

 +EVI:রমরমরমরম NG3;

 +EVI:রমরমরমরম NG4;

 +EVI:রমরমরমরম NZR;

 +DCT:IIII NG2;

 +DCT:IIII NG3;

 +DCT:IIII NG4;

 +DCT:IIII NZR;

 +PERF:িখিখিখিখ NG2;

 +PERF:িখিখিখিখ NG3;

Copyright ┬⌐ Palo Alto Research Center 2001-2014

PARC Finite-State Tool, version 2.15.7 (libcfsm-2.25.11) (svn 34269)

Type "help" to list all commands available or "help help" for further help.

xfst[0]: load stack NF_Animate-lex.fst

Opening input file 'NF_Animate-lex.fst'

April 22, 2014 17:38:29 GMT

Closing input file 'NF_Animate-lex.fst'

xfst[1]:

91

 +PERF:িখিখিখিখ NG4;

 +PERF:িখিখিখিখ NZR;

 +DIR-UP:খ7খ7খ7খ7 NG2;

 +DIR-UP:খ7খ7খ7খ7 NG3;

 +DIR-UP:খ7খ7খ7খ7 NG4;

 +DIR-UP:খ7খ7খ7খ7 NZR;

 +DIR-OUT:েথাকেথাকেথাকেথাক NG2;

 +DIR-OUT:েথাকেথাকেথাকেথাক NG3;

 +DIR-OUT:েথাকেথাকেথাকেথাক NG4;

 +DIR-OUT:েথাকেথাকেথাকেথাক NZR;

 +DIR-IN:িসনিসনিসনিসন NG2;

 +DIR-UP:িসনিসনিসনিসন NG3;

 +DIR-UP:িসনিসনিসনিসন NG4;

 +DIR-UP:িসনিসনিসনিসন NZR;

 +PROS:রররর NZR;

 +DEST:গাইগাইগাইগাই PROS;

 +DEST:গাইগাইগাইগাই NG2;

 +DEST:গাইগাইগাইগাই NG3;

 +DEST:গাইগাইগাইগাই NG4;

 +POT:গগগগ DUBT;

 +NG1:েরাইেরাইেরাইেরাই DUBT;

Lexicon Prefix

 +FORM:অঅঅঅ Verb;

Lexicon Verb

 চাচাচাচা NZR;

Lexicon NG2

 +NG2:তততত NZR;

Lexicon NG3

 +NG3:BBBB NZR;

Lexicon NG4

 +NG4:িBিBিBিB NZR;

Lexicon PROS

 +PROS:রররর NZR;

Lexicon DUBT

 +DUBT:দদদদ NZR;

Lexicon NZR

 +NZR:বববব #;

END

The wh-words in Manipuri resembles the features of English wh-words such as what,

when, where, etc. These Manipuri words take certain nominal suffixes and are very

particular in their behavior at the sentence level. The source lexicon to model this

nominal sub category is presented below for five Manipuri wh-words. (The text file is

saved as Wh-lex.txt).

92

Multichar_Symbols

+GEN +ACC +LOC +TOO +ABL +ASS +NOM +INQ

LEXICON Root

 Noun;

LEXICON Noun

 WhWords;

LEXICON WhWords

 ��� Wh0;

 ��) Wh1;

 �2�7 Wh2;

 �/2�# Wh3;

 �)#� Wh4;

LEXICON Wh0

 +INQ:^��� #;

 CaseInfl;

LEXICON Wh1

 +INQ:^��� #;

 CaseInfl;

LEXICON Wh2

 +INQ:^2 #;

 CaseInfl;

LEXICON Wh3

 CaseInfl;

LEXICON Wh4

 +INQ:��� #;

 CaseInfl;

LEXICON CaseInfl

 +GEN:^�� #;

 +NOM:^� #;

 +ASS:^� #;

 +ACC:^� #;

 +ABL:^2�� #;

 +LOC:^2 #;

 +GEN+INQ:^��^��� # ;

 +NOM+INQ:^�^��� #;

 +ASS+INQ:^�^��� #;

 +ACC+INQ:�̂ ��� #;

 +ABL+INQ:^2��^��� #;

 +LOC+INQ:^2^��� #;

END

The above text file is compiled using xfst from the xfst interface. It may be noted here

that compilation of lexicon text files into FSTN can also be performed from xfst

interface (Beesley & Karttunen, 2003, Chapter 3). The command for the same is

xfst[0]: read lexc <Wh-lex.txt

And the interface is shown below:

Copyright ┬⌐ Palo Alto Research Center 2001-2014

PARC Finite-State Tool, version 2.15.7 (libcfsm-2.25.11) (svn 34269)

93

Type "help" to list all commands available or "help help" for further help.

xfst[0]: read lexc <Wh-lex.txt

Opening input file 'Wh-lex.txt'

May 05, 2014 17:17:51 GMT

Reading UTF-8 text from 'Wh-lex.txt'

Root...1, Noun...1, WhWords...5, Wh0...2, Wh1...2, Wh2...2, Wh3...2, Wh4...2, Ca

seInfl...12

Building lexicon...Minimizing...Done!

3.4 Kb. 27 states, 55 arcs, 64 paths.

Closing 'Wh-lex.txt'

xfst[1]: write spaced-text >result.txt

Opening 'result.txt'

Closing 'result.txt'

xfst[1]:

The result of the compilation is written out to a text file called result.txt, which

contains the model for the five wh-words. (See Annexure IV). Here special mention

can be made that no spelling rules has been applied to this model and yet the resulting

model has all the word forms correct.

All the the spelling rules specific to a lexicon of a particular word class can be applied

through composition operation.

6.2 THE RULE TRANSDUCER

The morphotactical irregularities are captured by xfst 'replace rules which are part of

the extended regular expression notation xfst offers. They are shorthand notations for

complicated and rather opaque regular expressions built with more basic operators.

These replace rules do not increase the descriptive power of regular expressions, but

they represent a simple and straightforward method to define complicated finite-state

relations in rule-like notation (Beesley and Karttunen, 2003).

In the xfst interface replace rules are compiled using the read regex command or

define utilities just like other regular expression compilation. However in this study

we have written the grammars of replace rules in regular-expression files, to be

compiled with read regex <filename> commands on an individual basis from xfst

prompt. The complex sequences of xfst commands for compiling and manipulating

rule grammars are written in xfst script files, which are run using the source

command (Beesley and Karttunen, 2003, Chapter 3).

94

The simplest example of such a replace rule is [a -> b]. This rule denotes a relation

wherein every symbol a in the strings of the upper-side language is related to a

symbol b of the lower-side language. When this rule is applied downward to the string

aardvark of a finite-state network, every a will be replaced by b and so the output is

bbrdvbrk. The upper-side language of such a relation is the universal language; and

any upper-side string that does not contain a simply maps to itself on the lower side.

For every upper-side string that does contain a, it is mapped to a lower-side string that

contains b in the place of a (Beesley and Karttunen, 2003).

It is possible to define contexts for linguistic rules with more fine-grained

mechanisms. In Manipuri, it is more often that the occurrence of a morpheme is

restricted by its neighboring morphemes or we can say that occurrence of morphemes

are context sensitive. e.g. xfst has the provision for defining context sensitive replace

rules to formalize the alternation rules traditionally used in phonology. The rules

specified for the context sensitive replace rules are of the form:

[a -> b || L _ R]

The replace rule can handle context sensitive orthographic changes; where L denotes

the language that specifies the left context whereas R denotes the language that

restrains the right context for the replacement. The double-bar operator between the

replacement specification and the context expressions indicates that both context

expressions must match on the upper side of the relation. Contexts L and R are

optional, if L or R is empty, the resulting context is treated as the universal language

(any possible context is allowed) (Beesley and Karttunen, 2003).

In the xfst prompt, compilation of the replace rule for regular expression (PR1)

defined in section 5.4, chapter 5,Chapter 0 which is written in a text file, PR1.txt, as

ব->প || [প|ক|ত|7] _; is shown in the xfst interface as the following:

95

 6.3 APPLYING COMPOSITION OPERATION

Composition operation can be performed on two or more networks. In our context we

use composition operator in order to apply the spelling rules to the source lexicons. It

can either be performed directly from the xfst prompt on the available networks on the

stack or by writing the script in a script file. We prefer the later option as different

lexicons have different rule sets and stored them as a .fst file to be composed together

with networks of other word classes. A source file (a text file named ASRC.txt) to

compile and apply the rules applicable to adjective lexicon is as follows:

Table 6-1: A script file to compose the adjective lexicon with rules

Copyright ┬⌐ Palo Alto Research Center 2001-2014

PARC Finite-State Tool, version 2.15.7 (libcfsm-2.25.11) (svn 34269)

Type "help" to list all commands available or "help help" for further help.

xfst[0]: source PR1.txt

Opening input file 'PR1.txt'

April 19, 2014 07:30:59 GMT

2.3 Kb. 2 states, 12 arcs, Circular.

Closing file PR1.txt...

clear

read regex <PR1.txt

read regex <PR11.txt

read regex <PR9.txt

read regex <PR12.txt

read regex <PR13.txt

read regex <PR40.txt

read regex <PR41.txt

read regex <PR42.txt

compose net

read lexc <Adj-lex.txt

compose net

write spaced-text >result.txt

echo <<Done>>

96

The above script file not only compile and compose the rule and source lexicon

together to a finite state network, it also writes out the mapped form of the lexical to

the surface form in a plain text file called result.txt. So when ASRC.txt is invoked

from xfst prompt:

Copyright ┬⌐ Palo Alto Research Center 2001-2014

PARC Finite-State Tool, version 2.15.7 (libcfsm-2.25.11) (svn 34269)

Type "help" to list all commands available or "help help" for further help.

xfst[0]: source ASRC.txt

Opening input file 'ASRC.txt'

April 26, 2014 22:51:25 GMT

Opening file PR1.txt...

2.4 Kb. 2 states, 22 arcs, Circular.

Closing file PR1.txt...

Opening file PR11.txt...

2.6 Kb. 4 states, 34 arcs, Circular.

Closing file PR11.txt...

Opening file PR9.txt...

2.6 Kb. 4 states, 34 arcs, Circular.

Closing file PR9.txt...

Opening file PR12.txt...

2.6 Kb. 4 states, 31 arcs, Circular.

Closing file PR12.txt...

Opening file PR13.txt...

2.6 Kb. 4 states, 31 arcs, Circular.

Closing file PR13.txt...

Opening file PR40.txt...

2.3 Kb. 2 states, 10 arcs, Circular.

Closing file PR40.txt...

Opening file PR41.txt...

2.4 Kb. 2 states, 16 arcs, Circular.

Closing file PR41.txt...

Opening file PR42.txt...

2.4 Kb. 2 states, 16 arcs, Circular.

Closing file PR42.txt...

5.4 Kb. 13 states, 238 arcs, Circular.

Opening input file 'Adj-lex.txt'

April 27, 2014 04:13:59 GMT

Reading UTF-8 text from 'Adj-lex.txt'

Root...2, VR...1, Verbs...1, Suffixes...43, Prefix...1, Verb...1, NG2...1, NG3...1, NG4...1, PROS...1, DUBT...1,

NZR...1

Building lexicon...Minimizing...Done!

3.6 Kb. 36 states, 58 arcs, 44 paths.

Closing 'Adj-lex.txt'

3.8 Kb. 39 states, 69 arcs, 44 paths.

Opening 'result.txt'

Closing 'result.txt'

<<Done>>

Closing file ASRC.txt...

xfst[1]:

Annexure- III shows adjectives word forms derived from the verb root চা/ca (eat)

due to the above compilation.

Our strategy has been that we compose the source lexicon of each

separately with their applicable rule sets. Separate s

each word class and their respective rules. The resulting

are composed to form a single lexical transducer.

Afterwards all the resulting lexical transducers of the word categories are composed

together to form the final lexical transducer for

morphological analysis.

6.4 THE LEXICAL TRANSDUCER

The pictorial representation of how lexical transducers are formed is depicted as

shown in the following figure (court

2000)

Figure

97

Our strategy has been that we compose the source lexicon of each word

ir applicable rule sets. Separate source files are used for

each word class and their respective rules. The resulting lexical transducers altogether

are composed to form a single lexical transducer.

Afterwards all the resulting lexical transducers of the word categories are composed

together to form the final lexical transducer for a language model of

RANSDUCER

The pictorial representation of how lexical transducers are formed is depicted as

shown in the following figure (courtesy: Kenneth R. Beesley and Lauri Karttunen

Figure 6-1: The Lexical Transducer

word category

for compiling

lexical transducers altogether

Afterwards all the resulting lexical transducers of the word categories are composed

a language model of Manipuri

The pictorial representation of how lexical transducers are formed is depicted as

Kenneth R. Beesley and Lauri Karttunen,

