
 Department of computer science, Assam University, Silchar

Study of Evolving Neural Network for Word Sense Disambiguation 61

Chapter 7: Methodology and system design

62-71

 Department of computer science, Assam University, Silchar

Study of Evolving Neural Network for Word Sense Disambiguation 62

7.1 Introduction

Neural network approaches to WSD have been suggested (Cottrell and Small, 1983;

Waltz and Pollack, 1985)[65]. These models consist of networks in which the nodes

("neurons") represent words or concepts, connected by "activatory" links: the words

activate the concepts to which they are semantically related, and vice versa. In addition,

"lateral" inhibitory links usually interconnect competing senses of a given word.

Initially, the nodes corresponding to the words in the sentence to be analyzed are

activated. These words activate their neighbours in the next cycle in turn, these

neighbours activate their immediate neighbours, and so on. After a number of cycles, the

network stabilizes in a state in which one sense for each input word is more activated

than the others, using a parallel, analog, relaxation process.

Neural network approaches to WSD seem able to capture most of what cannot be handled

by overlap strategies such as Lesk's. However, the networks used in experiments so far

are hand-coded and thus necessarily very small (at most, a few dozen words and

concepts). Due to a lack of real-size data, it is not clear that the same neural net models

will scale up for realistic application. Further, some approaches rely on "context setting"

nodes to prime particular word senses in order to force 1the correct interpretation° But as

Waltz and Pollack point out, it is possible that such words (e.g., writing in the context of

pen) are not explicitly present in the text under analysis, but may be inferred by the

reader from the presence of other, related words (e.g., page, book, inkwell, etc.). To solve

this problem, words in such networks have been represented by sets of semantic " micro

features " (Waltz and Pollack, 1985; Bookman, 1987) which correspond to fundamental

semantic distinctions (animate/inanimate, edible/ inedible, threatening/safe, etc.),

characteristic duration of events (second, minute, hour, day, etc.), locations (city, country,

continent, etc.), and other similar distinctions that humans typically make about situations

in the world. To be comprehensive, the authors suggest that these features must number

in the thousands. Each concept in the network is linked, via bidirectional activatory or

inhibitory links, to only a subset of the complete microfeature set. A given concept

theoretically shares several microfeatures with concepts to which it is closely related, and

will therefore activate the nodes corresponding to closely related concepts when it is

activated :itself. However, such schemes are problematic due to the difficulties of

 Department of computer science, Assam University, Silchar

Study of Evolving Neural Network for Word Sense Disambiguation 63

designing an appropriate set of microfeatures, which in essence consists of designing

semantic primitives. This becomes clear when one examinees the sample microfeatures

given by Waltz ~md Pollack: they specify micro.f carfares such as CASINO and

CANYON, but it is obviously questionable whether such concepts constitute fundamental

semantic distinctions. More practically, it is simply difficult to imagine how vectors of

several thousands of microfeatures for each one of the lens of thousands of words and

hundreds of thousands of senses can be realistically encoded by hand.

7.2 GA for NN Optimization

In recent years researchers have used genetic algorithm techniques to evolve neural

network topologies.

Although these researchers have had the same aim in mind (namely, the evolution of

topologies that are better able to solve a particular problem), the approaches they used

varied greatly. For example, de Garis (1996) evolved NN by having a series of growth

commands give instructions on how to grow connections among nodes. Each node in the

network processed signals that told it how to extend its synapses. When two different

synapses reached each other, a new node was formed. The genetic algorithm was

responsible for evolving the sequence of growth commands that controlled how the

network developed.

Fullmer and Miikkulainen (1991)[66] developed a GA coding system where pieces of a

genotype went unused, imitating biological DNA processing. Only information stored

between a Start marker and an End marker was used to generate networks. The number of

correctly configured Start-End markers denned how many hidden nodes the network

would have. In addition, information between these Start-End markers denned how the

nodes were connected to each other. The meaning conveyed by each position in the used

part of the genome depended on its distance from its corresponding Start symbol.

For example, the genome shown in figure 1 would generate two nodes, one for string

S,a,1,b,5,a,-2,E and another for string S,b,0,a,3,E , which wraps around the end of the

genome. Node a had an initial activation of 1(because of substring S,a,1), is connected to

node b with a weight of 5 (because of substring b, 5), and to itself with a weight of -2

 Department of computer science, Assam University, Silchar

Study of Evolving Neural Network for Word Sense Disambiguation 64

(because of substring a, -2). Node b had an initial activation of 0 (because of substring

S,b,0) and a connection to node a with a weight of 3(because of substring a,3).

Figure 7-1: example of coding used by Fullmer & Miikulainen (Fullmer and

Miikkulainen (1991)).

The network evolved by this process was used to control a virtual creature's movements

in a square field, avoiding bad objects and coming into contact with good objects. The

GA continued to run until a network that could solve the problem evolved. The number

of generations needed until this network was found varied between 7 and 304 for objects

that could be identified before hitting them, and between 15 and 414 generations when

recognizing the object required travelling around it looking for a characteristic view[67].

Kitano (1994) used GA to evolve a sequence of graph generation rules, as opposed to

directly coding network topology. Each genome denned a sequence of rules used to

rewrite an element of the graph. When these rules were applied until only terminal

symbols remained, the graph denned a connectivity matrix which was then used to

configure a NN. For example, if we were developing a network with two nodes, a

genome might code rules [S ! AB][A ! 01][B ! 10]. When these three rules are applied we

end up with a 2*2 matrix than dense the connectivity between the two nodes in the

network.

To be sure, the above examples do not represent a complete list of researchers who have

used GA to optimize NN. A more complete review can be found, for example, in Yao

(1993)[68].

 Department of computer science, Assam University, Silchar

Study of Evolving Neural Network for Word Sense Disambiguation 65

7.3 A Natural Language Processing Task for a NN

This task was originally presented in D_avila (1999). As an overview, a network is asked

to receive a sentence one word at a time, and to incrementally build a description of the

sentence in its output nodes[69]. For example, if the sentence \the boy ran in the park" is

entered, the network should respond by indicating that the boy is a noun phrase, and it

acts as the agent of the verb ran . The network should also indicate that \in the park" is a

prepositional phrase modifying the verb ran .

Entering a word into the network amounts to activating a single node that represents the

given word at the input layer, and at the same time activating those semantic nodes that

select the meaning of the word being entered. For example, to enter the word boy , a node

that represents that word is activated, as well as nodes that indicate that the word being

entered is a proper noun, singular, concrete, and human. In addition, an ID node is set to a

value that would allow the network to distinguish john from other words that might have

the same semantic identity, such as girl . An example of such activation is shown in

figure 2.

Figure 7-2: Input layer presentation of boy (not all input nodes are shown).

The language used in this research is composed of ten nouns: boy, girl, john, mary, horse,

duck, car, boat, park, river. Available semantic nodes are: human, animal, or mechanical

(three mutually exclusive nodes); animate or inanimate (represented by one node, active

if the noun is animate); proper (active if true, inactive otherwise); and one ID node. Verbs

are entered in a similar way; the node representing that verb is activated, simultaneously

with semantic nodes that convey the meaning of that verb. Semantic nodes available for

verbs are: present or past tense (two mutually exclusive nodes), auxiliary verb, movement

verb, sound producing verb, sound receiving verb, visual receiving verb, and a verb ID

node used to distinguish verbs that would be identical otherwise (for example, ran and

swam would be identical without this last node)[70]. In total, there are twelve main verbs

 Department of computer science, Assam University, Silchar

Study of Evolving Neural Network for Word Sense Disambiguation 66

(saw, swam, swimming, ran, runs, running, is, was, raced, floated, said, heard) and two

auxiliary verbs (is, was). For example, figure 3 shows how the verb runs is entered in the

network; the individual node for runs is activated, as well as semantic nodes representing

a verb of movement and a present tense verb. In addition to nouns and verbs, the

language has three adjectives (fast, blue, red), one article (the), one adverb (fast), and

three prepositions(with , in , after). Each of these is entered in the network by activating

an individual node for the word, plus an additional node that indicates which type of

word (adjective, article, adverb, or preposition) is being entered. After each word is

entered, the NN is expected to produce a representation of what it understands about the

sentence up to that point. For example, after the network sees the boy (entered

Figure 7-3: Input layer presentation of runs (not all input nodes are shown).

one word at a time; first the and then boy) it should indicate that it has detected a noun

phrase that uses an article, and that the noun of this phrase is boy. Boy in this case is

represented by activating output nodes that code human , animate , concrete , and an

additional ID node that distinguishes boy from other words that otherwise would have

identical semantics (such as girl). An example of such an activation is shown in figure 4.

Figure 7-4: output layer presentation of the boy (not all output nodes are shown).

 Department of computer science, Assam University, Silchar

Study of Evolving Neural Network for Word Sense Disambiguation 67

If the network, immediately after having been shown the boy at the input layer, is shown

runs , it should respond by indicating that it has detected a verb phrase with runs as its

verb. Indicating that the verb of this verb phrase is runs is done by activating semantic

nodes for verb of movement and present tense . In addition, a node ID is activated so that

runs can be differentiated from other verbs that would otherwise have identical

semantics. At this point the network should also indicate that the first noun phrase

detected is the agent of the first verb phrase detected. This is done by activating a np1-

agent-of-vp1 node in the output layer.

In the manner described above, then, the network should continue to indicate its

understanding of the sentence being entered until an end-of-sentence marker is seen. The

fitness of a network is determined by computing the sum of squared errors for all output

nodes during the processing of all sentences in the language.

7.4 Genetic Definition of NN Topology

Each NN in this system has 75 hidden nodes between the input and output layers. These

75 nodes are divided into N hidden layers, where N is a number between 1 and 30. The

exact number of hidden layers is determined by the first gene of the corresponding

genome. This position stores a random floating point number, with a value between 0 and

1. To determine how many hidden layers a network has, the value of this gene is

multiplied by 30, and rounded to the next highest integer. If the result of this rounding up

is 31, the network uses 30 hidden layers. The number of hidden nodes in each of these

hidden layers is also determined by the network's

corresponding genome. The genome has 30 genes used to code the relative worth of each

of the possible hidden layers. Once the number of hidden layers is determined to be N

using the process described above, the N layers with the highest relative worth are

identified. The 75 available hidden nodes are distributed among each of these N hidden

layers according to each layer's worth relative to the sum of all N worth values.

 Department of computer science, Assam University, Silchar

Study of Evolving Neural Network for Word Sense Disambiguation 68

Figure 7-5sample of genes 1-30.

 For example, if a genome had genes 1-30 as illustrated in figure 5, and it had already

been determined that it would have five hidden layers (as described above), the five

layers to use are those indicated in bold. Since the sum of these five genes is 4.6, the first

hidden layer would have

(75*.91/4.6 =) 14 nodes. The other four hidden layers would be allocated hidden nodes

in the same way.

The connections between layers are also determined by the network's genome. For each

of the thirty possible layers, there is a gene that indicates where the layer takes its input

from. Each of these genes stores a random floating point value between 0 and 1. To

determine where each hidden layer takes its input from, its takes-its-input from gene

value is multiplied by N+2 (where N is the number of hidden layers this network will

have, as determined by the procedure outlined

Previously), and rounded to the nearest integer. The resulting number points to which

layer this one takes its input from. We multiply by N+2 to allow a hidden layer to take its

input from any of the N hidden layers, as well as either the input or the output layer. A

value of 1 would mean the layer takes its input from the input layer. A value of N+2

would mean the layer takes its input form the output layer. For values between 2 and

N+1, the layer would take its input from the layer with the (N-1)th highest relative worth.

 Department of computer science, Assam University, Silchar

Study of Evolving Neural Network for Word Sense Disambiguation 69

Figure 7-6: sample of genes 31-60.

For example, if the same genome used for the example above had genes 31-60 as

illustrated in figure 6, we would look at the corresponding 5 takes-input-from genes,

shown in bold in figure 6. Multiplying each of the selected genes by 6, we would obtain

4.14, 1.44, .06, 2.22, and 1.26.

This would mean that hidden layer 1 would take its input from hidden layer 4, hidden

layer 2 would take its input from hidden layer 1, hidden layer 3 would take its input from

the input layer, hidden layer 4 would take its input from hidden layer 2, and hidden layer

2 would take its input from hidden layer 1.

Where each layer sends its output is determined in a similar way, using positions 61-90

of the genotype. Each of these genes stores a random floating point value between 0 and

1. To determine where each layer sends its output, its sends-output-to gene value is

multiplied by N+1 and rounded to the nearest integer. The resulting number points to

which other layer this one will send its output to. We multiply by N+1 to allow for

hidden layers sending their output to any of the N hidden layers, as well as to the output

layer. A value of N+1 would mean the layer sends its output to the output layer. For

values between 1 and N, the layer sends its output to the layer with the Nth highest

relative worth. No layer sends its output back to the input layer. Results for the

experiment described above are presented in table 1. The four topologies evolved by the

GA system described above outperform commonly used NN topologies such as

Topology Average Best Worst

Type I 90.21 92.09 88.97

Type II 95.99 97.62 84.91

Type III 87.59 88.84 86.20

Type IV 82.69 85.97 80.39

SRN 70.58 90.40 17.69

fully connected 72.95 90.41 17.79

FGS 71.85 90.40 33.29

N-P 72.95 90.41 17.79

 Department of computer science, Assam University, Silchar

Study of Evolving Neural Network for Word Sense Disambiguation 70

Table 1: Percent of language correctly processed after training with 20% of complete

language, for both evolved and commonly used topologies.

Simple Recurrent Networks (SRN), Frasconi-Gori-Soda networks, and Narendra-

Parthasarathy networks. Although some of these commonly used topologies managed to

outperform some evolved topologies in the best of cases, on average the evolved

topologies performed better by more than 10%. In addition, previously used topologies

demonstrate a higher sensitivity to initial conditions.

The worst performance for previously used topologies is more than 45% lower than the

worst performance for evolved topologies. Details about the characteristics of the evolved

networks can be found in D_avila (1999).

7.5 Schema Disruption Computation

If we view the evolution of NN as a process with the main goal of defining connections

between any two nodes, then we can determine their ability to combine building blocks

by estimating how likely it is for evolutionary operations to disrupt connection

definitions; the less likely it is for connection definitions to be disturbed, the easier it is

for the algorithm to combine building blocks present in the current population.

An operation like crossover can disrupt a connection definition every time a crossover

point is selected between two genes that, taken together, define a connection between

nodes of a network. Therefore, how likely it is for crossover to cause this disruption can

be estimated by the distance between genes that combine to define any particular

connection. If a particular connection is defined by alleles in genes gi and gj , then the

bigger the distance between gi and gj , the bigger

the chance that the connection will be disrupted by a crossover operation. Taking a sum

of the distance between genes that can define a connection we obtain a total disruption

index (TDI) of

 Department of computer science, Assam University, Silchar

Study of Evolving Neural Network for Word Sense Disambiguation 71

where N is the number of genes, and DC(k, x) equals to a number between 0 and 1 which

indicates what is the probability that gene x is involved in defining connection k. Notice

that this number rejects a global probability of disruption for the complete network, as

opposed to for any particular connection. This is different from what was originally

presented in D_avila (2000)[71], and is motivated by the fact that the more connections a

network has, the more likely it is to suffer disruptions.

