To my parents Late Putul Ch. Das &Monoroma Das My elder brothers Manju Kr. Das &Ranjit Kr. Das and My wife

Mrs. Pompa Das

DECLARATION

I, Sanju Das, bearing Registration Number Ph.D/1882/12 Dated 09-04-2012, hereby declare that the subject matter of the thesis entitled "Cloud Detection and Correction of Satellite Image using RSGIS" is the record of work done by me and that the contents of the thesis did not form the basis for award of any other degree to me or to anybody else to the best of my knowledge. The thesis has not been submitted in any other University / Institute. This thesis is being submitted to Assam University for the degree of Doctor of Philosophy in Computer Science.

Place: Assam University, Silchar Date:

(Sanju Das) Research Scholar

ACKNOWLEDGEMENTS

Though this thesis will be officially credited against my name, but many other persons and institution deserve to be credited without whom this thesis might not have become a reality. So, I would like to take this opportunity to render my sincere thanks and gratitude to all of them.

At the very onset, I address my heartfelt gratitude to my research supervisor, Prof. Bipul Syam Purkayastha Professor and Head, Department of Computer Science, Assam University Silchar for his valuable guidance, great encouragement and constant supervision throughout my research work without which this thesis would not have seen the daylight.

I wish to express my sincere gratitude and thanks to Prof. K.Sharma, Head (CSE), SMIT Sikkim for his precious help, encouragement and motivation throughout my research work. I also acknowledge to all the faculty members of the Department of Computer Science, my teachers, staff members - for their encouragement and valuable suggestions.

I am grateful to Assam University Silchar for providing me the necessary infrastructure and support to carry out my research work.

I also thank all the research scholars of the Department of Computer Science, Assam University Silchar for their kind cooperation to complete this work.

Last but not the least, I must acknowledge the continuous moral support and

encouragement provided by all my beloved family members, relatives and friends that was my constant source of energy for carrying out this research work. My elder brothers Manju Kr. Das and Ranjit Kr. Das deserve special mention for giving me continuous moral and financial support. Lastly I would like to acknowledge my wife Pompa Das for her continuous encouragement.

Date:

(SANJU DAS)

CONTENTS

			Page No.	
Abstract i				
List of Figures			ii-iii	
List of Tables				
1	Intro	duction 1		
	1.1	Motivation	2	
	1.2	Objectives	3	
	1.3	Methodology	3-4	
	1.4	Main Contributions	4	
	1.5	Thesis Outline	5-6	
2	Princ	ciples of Remote Sensing 7		
	2.1	Introduction	7	
	2.2	Remote Sensing	7	
		2.2.1 Basic Components of Remote Sensing	8-9	
	2.3	History of Remote-sensing	9-10	
	2.4	Types of Remote-sensing		
		2.4.1 Visual remote sensing system	11	
		2.4.2 Optical Remote Sensing	11	
		2.4.3 Infrared Remote Sensing	12	
		2.4.4 Microwave Remote Sensing	12-13	
		2.4.5 Radar Remote Sensing	13	
		2.4.6 Satellite Remote Sensing	13	

	2.5	Energy Interaction in the atmosphere	14
	2.6	Application of Remote-sensing	14-16
		2.6.1 Advantages and Limitations of Remote-sensing	16-17
	2.7	Chapter Summary	17
3	A Bri	ief Overview on Geographic Information Systems	
	3.1	Introduction	18
	3.2	Geographic Information System	19
	3.3	Function of Geographic Information System	
		3.3.1 Data Collection & Processing	20-21
		3.3.2 Data Retrieval	21-22
		3.3.3 Measurement & Analysis	23
		3.3.4 Output and Visualisation	23
	3.4	Types of Geographic Information System	
		3.4.1 Multimedia/Hypermedia GIS	24
		3.4.2 Web GIS	24
		3.4.3 Virtual Reality GIS	24
	3.5	Data Types	25
		3.5.1 Vector form and its data structure	25
		3.5.2 Raster form and its data structure	26
	3.6	Application of GIS	27
	3.7	Chapter Summary	27

Limitations of RS Data

4.1	Introd	uction	28
	4.1.1	Clouds & Cloud Shadows	28-29
4.2	Remo	te Sensing Image Resolution	29
	4.2.1	Spatial Resolution	29-30
	4.2.2	Spectral Resolution	30-31
	4.2.3	Radiometric Resolution	31-32
	4.2.4	Temporal Resolution	32-33
4.3	Techn	ical Limitations of Remote Sensing Data	
	4.3.1	Radiometric Corrections	33-35
	4.3.2	Atmospheric Corrections	36-37
	4.3.3	Geometric Corrections	37-38
4.4	Chapt	er Summary	40
Comp	outation	nal Analysis of Cloud Detection Techniques	
5.1	Introd	uction	41-42
5.2	Need	of cloud detection	42-43
5.3	Bi-Spo	ectral Composite Threshold	44
5.4	Cloud	Detection Techniques of Satellite Imagery	45
	5.4.1	Semi-supervised Cloud Classification	45
	5.4.2	Cloud Detection Algorithm for MODIS Remote Se	nsing Imagery 46
	5.4.3	Cloud-Screening Algorithm for ENVISAT/MERIS	Multispectral
	Image	S	46-47
	5.4.4	Cloud Detection Algorithms Based on a MAP-MR	F Approach in

		Space and Time	47-48
		5.4.5 Cloud and Haze Boundary Detect	48-49
	5.5	Comparative analysis of cloud detection techniques	49
	5.6	Chapter Summary	50
6	Comp	outational Analysis of Cloud Removal Techniques	
	6.1	Introduction	51-52
	6.2	Multi-Spectral Image Enhancement	53
		6.2.1 Contrast Stretching	53-54
		6.2.2 Histogram Equalization	54-55
		6.2.3 Homomorphic Filter	55
	6.3	Different Cloud Removal Techniques	
		6.3.1 Mean	56
		6.3.2 Modified Maximum Averaging	56-57
		6.3.3 Radiometric Normalization	57-59
	6.4	Chapter Summary	60
7	Autor	nated Cloud Detection & Removal of Satellite Imagery	
	7 .1	Introduction	61
	7.2	Threshold	61-62
	7.3	Model of the Proposed Method	62-63
	7.4	Information Extraction	63-64
		7.4.1 Colour Conversion	64
		7.4.2 Pixel-to-Pixel Correction	65
	7.5	Cloud Detection	65-66

		7.5.1 Procedure of Cloud Detection Algorithm	66
	7.6	Cloud Removal	66-67
		7.6.1 Algorithm for Cloud Removal	67
8	Result	t Conclusion and Future Scope	
	8.1	Result	68-74
	8.2	Accuracy Test	75
	8.3	Conclusion	76
	8.4	Limitations	76
	8.5	Future Work	76
Bibliography			77-85
Appendix A List of Publications			86
Appendix B Workshop / Training Program87			87

ABBREVIATION

RSGIS	Remote Sensing and Geographic Information System
HRP	High Resolution Picture
MCSST	Multi-Channel Sea Surface Temperature
EMR	Electro Magnetic Radiation
GPS	Global Positioning System
USGS	United States Geological Survery
DB	Data Base
SDSS	Spatial Decission Support Systems
VRML	Virtual Reality Modelling Language
NHS	National Health Service
RS	Remote Sensing
GIS	Geographic Information System
IFOV	Instantaneous Field of View
dpi	Dots Per Inch
NI	Near Infrared
L _T	Total radiance is measured by Sensor
T _R	Atmospheric Transmittance
R	Object Reflectance
E _T	Total irradiance reaching the earth
DN	Digital Number
AVHRR	Advanced Very High Resolution Radiometer
HIRS	High Resolution Infrared Radiometer Sounder
ISCCP	International Satellite Cloud Climatology Project
SMMR	Scanning Multichannel Microwave Radiometer
BPNN	Backpropogation Neural Network
SOM	Self Organisizing Map
PNN	Probability Neural Network
GOES	Geostationary Operational Environmental Satellite
BCT	Bispectral Composite Threshold

TBT	Brightness Temperature
SW	Shortwave
LW	Longwave
MERIS	Medium Resolution Imaging Spectrometer
SVM	Support Vector Machines
SSL	Semisupervised Learning
MODIS	Moderate Resolution Imaging Spectrum Radiometer
ENVISAT	Environmental Satellite
MAP	Maximum Posterion Probability
MRF	Markov Random Field
PHD	Probability Hypothesis Density
GM_{S}	Gaussian mixtures
FISST	Finite Set Statistics
MCC	Maximum Cross Correction
I _{mean}	Cloud Image Mean Value
I _{std}	Cloud Image Standard Deviation Value
MMA	Modified Maximum Average
NSPI	Neighbourhood Similar Pixel Interpolation
I _{min}	Minimum Intensity
I _{max}	Maximum Intensity
HE	Histogram Equilization
GHE	Global Histogram Equilization
AHE	Adaptive Histogram Equilization
BHE	Block-based Histogram Equilization
ACDCR	Automated Cloud Detection & Cloud Removal
PI	Pixel Intensity
Т	Threshold Value
RGB	Red Green Blue
Y	Luma Information
IQ	Chrominance Information
RMSE	Root Mean Square Error

List of Figures

- 2.1 Block Diagram of Remote Sensing
- 2.2 Visual Remote Sensing
- 2.3 Optical Remote Sensing
- 2.4 Infrared Remote Sensing
- 2.5 Radar Remote Sensing
- 2.6 Satellite Remote Sensing
- 3.1 Geographic Information System (GIS) Architecture
- 3.2 Data Structure of Vector Data
- 3.3 Data Structure of Raster Data
- 4.1 Reflectance Spectrum
- 4.2 Steps of Radiometric Corrections
- 4.3 Atmospheric Effect
- 4.4 Atmospheric Corrections
- 4.5 Geometric Corrections

- 6.1(a) Target Image
- 6.1(b) Reference Image
- 6.1(c) Cloud Free Image
- 6.2 Homomorphic Filtering
- 6.3 Normalized Image after Cloud Removal
- 7.1 Workflow of proposed method
- 7.2 Pixel-to-pixel Comparison
- 7.3 Pixel-to-pixel Image Corrections
- 8.1(a) Target Image
- 8.1(b) Reference Image
- 8.1(c) Gray Scale Image
- 8.2 Pixel Intensity Value of Subject Image
- 8.3 Pixel Intensity Value of Reference Image
- 8.5(a) Cloud Free Image
- 8.5(b) Pixel Intensity of Cloud Free Image
- 8.6(a) Histogram of Subject Image
- 8.6(b) Histogram of Cloud Free Image

List of Tables

- 2.1 Indian Earth Observation Satellites
- 3.1 Spatial Data Input Method Devices
- 3.2 Raster and Vector Representation
- 5.1 Analysis of Cloud Detection Algorithm
- 6.1 Different Image Enhancement Techniques
- 8.1 Result Analysis