CHAPTER 5

RESULTS

5.1. Effects of mercuric chloride and cadmium chloride exposure singly on oxidative stress, antioxidant defenses and immune functions in macrophages from freshwater fish *Channa punctatus Bloch*.

5.1.1. Study of effects of mercuric chloride and cadmium chloride exposure singly on ultra-structural changes bioaccumulation, morphological alteration in macrophages from freshwater fish *Channa punctatus*

5.1.1.1. Heavy metal analysis in different organs of untreated and treated fish

Table. 5.1. Heavy metal analysis in different organs of untreated and treated fish after 7 days of exposure (ppm/g tissue)

UNTREATED	INTESTINE	LIVER	GILLS	MUSCLES
CDOUD				
GROUP				
MERCURY	0.072±0.001	0.039 ± 0.02	0.044±0.023	0.025±0.017
ACCUMULATION				
	0.041 ± 0.01	0.046+0.016	0.0388+0.01/	0.027+0.07
CADMICINI	0.041 ± 0.01	0.040±0.010	0.0300±0.014	0.027±0.07
ACCUMULATION				
TREATED	INTESTINE	LIVER	GILLS	MUSCLES
TREATED	INTESTINE	LIVER	GILLS	MUSCLES
TREATED GROUP	INTESTINE	LIVER	GILLS	MUSCLES
TREATED GROUP	INTESTINE	LIVER	GILLS	MUSCLES
TREATED GROUP MERCURY	INTESTINE 1.065±0.06	LIVER 1.05 ± 0.024	GILLS 0.921±0.025	MUSCLES 0.42 ± 0.018
TREATED GROUP MERCURY ACCUMULATION	INTESTINE 1.065±0.06	LIVER 1.05 ± 0.024	GILLS 0.921±0.025	MUSCLES 0.42 ± 0.018
TREATED GROUP MERCURY ACCUMULATION	INTESTINE 1.065±0.06	LIVER 1.05 ± 0.024	GILLS 0.921±0.025	MUSCLES 0.42 ± 0.018
TREATED GROUP MERCURY ACCUMULATION	INTESTINE 1.065±0.06	LIVER 1.05 ± 0.024	GILLS 0.921±0.025 0.87 ± 0.011	MUSCLES 0.42 ± 0.018
TREATED GROUP MERCURY ACCUMULATION CADMIUM	INTESTINE 1.065±0.06 0.93 ± 0.021	LIVER 1.05 ± 0.024 0.92±0.015	GILLS 0.921±0.025 0.87 ± 0.011	MUSCLES 0.42 ± 0.018 0.58 ± 0.022
TREATED GROUP MERCURY ACCUMULATION CADMIUM ACCUMULATION	INTESTINE 1.065±0.06 0.93 ± 0.021	LIVER 1.05 ± 0.024 0.92±0.015	GILLS 0.921±0.025 0.87 ± 0.011	MUSCLES 0.42 ± 0.018 0.58 ± 0.022

Note: The values were statistically significant at P < 0.05.

Fig. 5.1: Morphological alteration of intestinal macrophages when treated singly with mercury and cadmium after 4 days (a) and 7 days (b) of exposure. Hg, Cd (4 days) P < 0.05; Hg, Cd (7 days) P < 0.05.

5.1.1.3. Ultra structural analysis of tissue by scanning electron microscope

Fig. 5.2: Ultramicroscopic photographs of untreated fish showing prominent mucosal foldings (blue arrow) and normal epithelium (white arrow) after 4 days (A) and 7 days (B).

Fig. 5.3: Ultramicroscopic photographs of mercury treated fish showing debris of mucosal folds (blue arrow), damaged and degenerated epithelium (white arrow) after 4 days (C) and 7 days (D) of exposure.

Fig.5.4. Ultramicroscopic photographs of cadmium treated fish showing inflammatory damage in epithelium (white arrow), disarrangement and fragmentation of mucosal foldings (blue arrow) and secretion of mucus after 4 days (E) and 7 days (F) of exposure.

5.1.1.4. Ultra structural analysis of tissue by transmission electron microscope

Fig. 5.5: Plate (A) Transmission electron micrograph (TEM) of the intestinal tissue of control fish showing regularly arranged microvilli (red arrow), intact rough endoplasmic reticulam (RER) of epithelial cells (yellow arrow).

Plate (B) Transmission electron micrograph (TEM) of the intestinal tissue of control fish showing goblet cells (orange arrow),

Plate (C) Transmission electron micrograph (TEM) of the control fish showing intact rough endoplasmic reticulam (RER) of epithelial cells (yellow arrow), zona occludens (Z), gap junction (blue arrow) and elongated nucleus with well-developed nucleolus (N).

Fig. 5.6: Transmission electron micrograph (TEM) of *C. punctatus* Bloch. after 4 days (D) and 7 days (E) days of mercury exposure showing denudation of goblet cells (orange arrow), disrupted microvilli (red arrow) disrupted RER (yellow arrow), lack of gap junction and zona occludens (Z) as compared to the control fish.

Fig. 5.7: Transmission electron micrograph (TEM) of *C. punctatus* Bloch. after 4 days (F) and 7 days (G) days of cadmium exposure showing denudation of goblet cells (orange arrow), disrupted microvilli (red arrow) disrupted RER (yellow arrow), lack of gap junction and zona occludens (Z) as compared to the control fish.

5.1.2. Study of effect of mercuric chloride and cadmium chloride singly on oxidative stress and antioxidant defenses in macrophages from fish *Channa punctatus*

5.1.2.1. Effect of mercury and cadmium on respiratory burst activity of fish macrophages

There was a significant increase in respiratory burst activity from 0.271 ± 0.09 (4 days), 0.313 ± 0.02 (7 days) in control group to 0.735 ± 0.13 (4 days), 0.969 ± 0.03 (7 days) in mercury treated and 0.414 ± 0.09 (4 days), 0.601 ± 0.02 (7 days) in cadmium treated group.

Fig. 5.8: Respiratory burst activity in macrophages of fish treated with mercury and cadmium Hg, Cd (4 days) P< 0.05; Hg, Cd (7 days) P< 0.025.

5.1.2.2. Effect of mercury and cadmium on lipid peroxidation of fish macrophages

There was a significant increase in lipid peroxidation from 0.243 ± 0.02 nmoles/hr (4 day), 0.215 ± 0.04 nmoles/hr (7 day) in control group to 0.575 ± 0.18 nmoles/hr (4 day), 0.716 ± 1.191 nmoles/hr (7 day) in mercury treated and 0.471 ± 1.22 nmoles/hr (4 day), 0.526 ± 1.11 nmoles/hr (7 day) in cadmium treated group.

Fig. 5.9: Estimation of lipid peroxidation (LPO) in macrophages of fish treated with mercury and cadmium for 4 days and 7 days respectively. Hg, Cd (4 day) P< 0.025; Hg,

5.1.2.3. Effect of mercury and cadmium on catalase (CAT) activity of fish macrophages

There was a significance decrease in catalase activity from 5.43 ± 1.22 U/mg protein (4 day), 5.69 ± 1.82 U/mg protein (7 day) in control group to 5.106 ± 1.144 U/mg protein (4 day), 4.39 ± 1.26 U/mg protein (7 day) in mercury and 5.063 ± 1.54 U/mg protein (4 day), 4.05 ± 1.69 U/mg protein (7 day) in cadmium treated group.

Fig. 5.10: Catalase (CAT) activity in control and heavy metal (mercury and cadmium) exposed fish macrophages after the exposure of 4 days and 7 days respectively. Hg, Cd (4 day) P < 0.05; Hg, Cd (7 day) P < 0.02.

5.1.2.4. Effect of mercury and cadmium on superoxide dismutase (SOD) activity of fish macrophages

There was a significance increase in superoxide dismutase activity from 0.0096±.001 U/mg protein (4 day), 0.00953±0.018 U/mg protein (7 day) in control group to 0.0157±0.008 U/mg protein (4 day), 0.033±0.001 U/mg protein (7 day) in mercury treated and 0.010±0.001 U/mg protein (4 day), 0.026±0.004 U/mg protein (7 day) in cadmium treated group.

Fig. 5.11: Superoxide dismutase (SOD) activity in control and heavy metal exposed fish macrophages. Hg (4 day) P< 0.02; Cd (4 day) P< 0.05; Hg, Cd (7 day) P< 0.01.

5.1.2.5. Effect of mercury and cadmium on glutathione S- transferase (GST) activity of fish macrophages

There was a significance decrease in glutathione S- transferase activity from 31.61±1.76 nmoles/min/mg protein (4 day), 30.68±0.50 nmoles/min/mg protein (7 day) in control group to 25.94±2.46 nmoles/min/mg protein (4 day), 22.18±0.24 nmoles/min/mg protein (7 day) in mercury treated and 29.32±0.51 nmoles/min/mg protein (4 day), 26.29±0.99 nmoles/min/mg protein (7 day) in cadmium treated group.

Fig. 5.12: Glutathione S-transferase (GST) activity in macrophages of fish treated with mercury and cadmium. Hg, Cd (4 day) P< 0.01; Hg, Cd (7 day) P< 0.05.

5.1.2.6. Effect of mercury and cadmium on glutathione peroxidase (GPx) activity of fish macrophages

There was a significance decrease in glutathione peroxidase activity from 7.60 ± 0.77 nmoles/min/mg protein (4 day), 7.72 ± 1.05 nmoles/min/mg protein (7 day) in control group to 5.48 ± 0.38 nmoles/min/mg protein (4 day), 4.31 ± 0.25 nmoles/min/mg protein (7 day) in mercury treated and 6.36 ± 0.39 nmoles/min/mg protein (4 day), 5.06 ± 0.05 nmoles/min/mg protein (7 day) in cadmium treated group.

Fig. 5.13: Glutathione peroxidase (GPx) activity in macrophages of fish treated with mercury and cadmium. Hg, Cd (4 day) P< 0.01; Hg, Cd (7 day) P< 0.025.

5.1.2.7. Effect of mercury and cadmium on glutathione reductase (GR) activity of fish macrophages

There was a significance decrease in glutathione reductase activity from 6.32 ± 0.53 nmoles/min/mg protein (4 day), 6.13 ± 0.51 nmoles/min/mg protein (7 day) in control group to 4.82 ± 0.21 nmoles/min/mg protein (4 day), 3.83 ± 0.28 nmoles/min/mg protein (7 day) in mercury treated and 5.23 ± 0.38 nmoles/min/mg protein (4 day), 4.12 ± 0.12 nmoles/min/mg protein (7 day) in cadmium treated group.

Fig. 5.14: Glutathione reductase (GR) activity in macrophages of fish treated with mercury and cadmium. Hg, Cd (4 day) P< 0.025; Hg, Cd (7 day) P< 0.05.

5.1.2.8. Effect of mercury and cadmium on reduced glutathione (GSH) activity of fish macrophages

There was a significance decrease in reduced glutathione activity from 0.338 ± 0.05 nmoles/min/mg protein (4 day), 0.329 ± 0.01 nmoles/min/mg protein (7 day) in control group to 0.249 ± 0.05 nmoles/min/mg protein (4 day), 0.111 ± 0.008 nmoles/min/mg protein (7 day) in mercury treated and 0.31 ± 0.01 nmoles/min/mg protein (4 day), 0.104 ± 0.007 nmoles/min/mg protein (7 day) in cadmium treated group.

Fig. 5.15: Reduced glutathione (GSH) consumed in macrophages of fish treated with mercury and cadmium. Hg, Cd (4 day) P< 0.25; Hg, Cd (7 day) P< 0.001.

5.1.3. Study of effect of mercuric chloride and cadmium chloride singly on innate immune responses in macrophages from fish *Channa punctatus*

5.1.3.1. Effect of mercury and cadmium on phagocytic activity of fish macrophages

There was a significant decrease in phagocytic activity from 21739±780.63 % (4 day), 21618±548.26 % (7 day) in control group to 14520±716.89 % (4 day), 10781±1057.87 % (7 day) in mercury treated and 17074.41±781.12 % (4 day), 14290.67±674.20 % (7 day) in cadmium treated group.

Fig. 5.16: Phagocytic activity in macrophages of fish treated with mercury and cadmium. Hg (4 day) P<0.02; Hg (7 day) P< 0.01; Cd (4 day) P< 0.05; Cd (7 day) P< 0.05.

5.1.3.2. Effect of mercury and cadmium on intracellular killing activity of fish macrophages

There was a significant increase in bacterial viability (%) at different time interval in both mercury and cadmium treated group as compared to the control group.

Fig 5.17: Intracellular killing activity in macrophages of fish treated with mercury and cadmium. 4 day- Hg (P<0.05); Cd (P<0.005), 7 day- Hg (P<0.01); Cd (P<0.025).

5.1.3.3. Effect of mercury and cadmium on the cell adhesion property of fish macrophages

There was a significant decrease in the cell adhesion property of cells at different time interval in both mercury and cadmium treated group as compared to the control.

Fig. 5.18: *In vitro* cell adhesion in macrophages of fish treated with mercury and cadmium. 4 day- Hg (P<0.025); Cd (P<0.004), 7 day- Hg (P<0.01); Cd (P<0.025).

5.1.3.4. Effect of mercury and cadmium on nitric oxide (NO) release of fish macrophages

There was a significant decrease in nitric oxide release from $52.48\pm2.42 \ \mu M$ (4 day), $52.94\pm1.56 \ \mu M$ (7 day) in control group to $23.45\pm4.75 \ \mu M$ (4 day), $17.56\pm3.65 \ \mu M$ (7 day) in mercury treated and $29.12\pm1.11 \ \mu M$ (4 day), $24.03\pm1.09 \ \mu M$ (7 day) in cadmium treated group.

Fig. 5.19: Nitric oxide release in macrophages of fish treated with mercury and cadmium. 4day- Hg (P< 0.01) Cd (P<0.02); 7 day- Hg, Cd (P< 0.05).

5.1.3.5. Effect of mercury and cadmium on myeloperoxidase (MPO) release of fish macrophages

There was a significant decrease in myeloperoxidase release from $42.85\pm0.36\%$ (4 day), $43.26\pm0.89\%$ (7 day) in control group to $29.66\pm0.68\%$ (4 day), $24.77\pm1.62\%$ (7 day) in mercury treated and $35.76\pm2.89\%$ (4 day), $31.37\pm1.26\%$ (7 day) in cadmium treated group.

Fig. 5.20: Myeloperoxidase release in macrophages of fish treated with mercury and cadmium. Hg, Cd (4 day) P<0.02; Hg (7 day) P<0.05; Cd (7 day) P<0.04.

5.1.3.6. Effect of mercury and cadmium on TNF-α release of fish macrophages

TNF- α release both from cell lysate and plasma was significantly increased in mercury treated and cadmium treated group as compared to the control group.

Fig. 5.21 (a): TNF-α released in cell supernatant of mercury and cadmium treated group
(b) TNF-α released in serum of mercury and cadmium treated group. Hg (4 day)
P<0.02; Hg, Cd (7 day) P< 0.05; Cd (4 day) P< 0.01.

5.1.3.7. Effect of mercury and cadmium on IL- 6 release of fish macrophages

There was a significant increase in IL-6 release from 0.042±0.005 pg/ml (4 day), 0.047±0.002 pg/ml (7 day) in control group to 0.055±0.002 pg/ml (4 day), 0.064±0.004 pg/ml (7 day) in mercury treated and 0.050±0.044 pg/ml (4 day), 0.058±0.034 pg/ml (7 day) in cadmium treated group.

Fig 5.22: IL-6 released from plasma of mercury and cadmium treated group. Hg (4 day) P<0.02; Hg, Cd (7 day) P< 0.05; Cd (4 day) P< 0.01.

5.2. Study of mercuric chloride and cadmium chloride exposure simultaneously on intestinal of fish *Channa punctatus*.

5.2.1. Effects from combined mercuric chloride and cadmium chloride exposure on ultrastructural changes, bioaccumulation and morphological alteration in macrophages from fish *Channa punctatus*

5.2.1.1. Heavy metal analysis in different organs of untreated and treated multimetal group (ppm/g tissue)

Table 5.2: Heavy metal analysis in different organs of untreated group and group with simultaneous treatment of mercury and cadmium after 7 days of exposure (ppm/g tissue).

UNTREATED GROUP	INTESTINE	LIVER	GILLS	MUSCLES
Mercury accumulation	0.072±0.001	0.039±0.02	0.044±0.023	0.025±0.017
Cadmium accumulation	0.041±0.01	0.046±0.016	0.0388±0.014	0.027±0.07

TREATED	INTESTINE	LIVER	GILLS	MUSCLES
GROUP				
Mercury	1.10±0.003	1.15±0.004	1.061±0.14	0.59±0.01
accumulation				
Cadmium	0.99±0.001	0.972±0.017	1.0131±0.003	0.83±0.002
accumulation				

Note: The values were statistically significant at P < 0.005.

5.2.1.2. Morphological alteration of macrophages in multi- metal treated group

Fig. 5.23: Combined effect of mercury and cadmium on the morphological alteration of intestinal macrophages for 4 days (a) and 7 days (b) respectively. Hg, Cd (4 day) P< 0.05; Hg, Cd (7 day) P< 0.05.

5.2.1.3. Ultra structural analysis of tissue by scanning electron microscope

Fig.5.24: Ultramicroscopic photographs of untreated fish showing prominent mucosal foldings (blue arrow) and normal epithelium (white arrow) after 4 days (A) and 7 days (B) repectively.

Fig. 5.25: Ultramicroscopic photographs of mercury treated fish showing debris of mucosal folds (blue arrow), damaged and degenerated epithelium (white arrow) after 4 days (C) and 7 days (D) of exposure.

Fig. 5.26: Ultramicroscopic photographs of cadmium treated fish showing inflammatory damage in epithelium (white arrow), disarrangement and fragmentation of mucosal foldings (blue arrow) and secretion of mucus after 4 days (E) and 7 days (F) of exposure.

Fig. 5.27: Ultramicroscopic photographs of multi metal (Hg+Cd) treated fish showing inflammatory damage in epithelium (white arrow), disarrangement and fragmentation of mucosal foldings (blue arrow) and secretion of mucus after 4 days (G) and 7 days (H) of exposure.

5.2.1.4. Ultra structural analysis of tissue by transmission electron microscope

Fig. 5.28: Plate (A) Transmission electron micrograph (TEM) of the intestinal tissue of control fish showing regularly arranged microvilli (red arrow), intact rough endoplasmic reticulam (RER) of epithelial cells (yellow arrow).

Plate (B) Transmission electron micrograph (TEM) of the intestinal tissue of control fish showing goblet cells (orange arrow).

Fig.5.29: Transmission electron micrograph (TEM) of *C. punctatus* Bloch. after 4 days (C) and 7 days (D) days of mercury exposure showing denudation of goblet cells (orange arrow), disrupted microvilli (red arrow) disrupted RER (yellow arrow), lack of gap junction and zona occludens (Z) and disrupted RER (yellow arrow), as compared to the control fish.

Fig.5.30: Transmission electron micrograph (TEM) of *C. punctatus* Bloch. after 4 days (E) and 7 days (F) days of cadmium exposure showing denudation of goblet cells (orange arrow), disrupted microvilli (red arrow) disrupted RER (yellow arrow), lack of gap junction and zona occludens (Z) as compared to the control fish.

Fig.5.31: Transmission electron micrograph (TEM) of *C. punctatus* Bloch. after 4 days (G) and 7 days (H) days of multi metal exposure (Hg+Cd) exposure showing denudation of goblet cells (orange arrow), disrupted microvilli (red arrow) disrupted RER (yellow arrow), lack of gap junction and zona occludens (Z) as compared to the control fish.

5.2.2. Study of effect of mercuric chloride and cadmium chloride exposure simultaneously on oxidative stress and antioxidant defenses in macrophages from fish *Channa punctatus*

5.2.2.1. Effect of multi-metal exposure on respiratory burst activity of fish macrophages

There was a significant increase in respiratory burst activity from 0.271 ± 0.09 (4 day), 0.313 ± 0.02 (7 day) in control group to 1.105 ± 0.09 (4 day), 1.50 ± 0.07 (7 day) in multimetal treated group.

Fig. 5.32: Respiratory burst activity in intestinal macrophages of fish treated simultaneously with mercury and cadmium. Hg, Cd (4 day) P < 0.05; Hg, Cd (7 day) P < 0.025.

5.2.2.2. Effect of multi- metal exposure on lipid peroxidation of fish macrophages

There was a significant increase in lipid peroxidation from 0.243 ± 0.033 nmoles/hr (4day), 0.215 ± 0.003 nmoles/hr (7day) in control group to 0.875 ± 0.059 nmoles/hr (4 day) and 1.214 ± 0.176 nmoles/hr (7 day) in multi-metal treated group.

Fig. 5.33: Estimation of lipid peroxidation (LPO) in multi- metal exposed fish macrophages. Hg, Cd (4 day) P < 0.05; Hg, Cd (7 day) P < 0.01.

5.2.2.3. Effect of multi-metal exposure on catalase (CAT) activity of fish macrophages

There was a significance decrease in catalase activity from 5.43 ± 0.508 U/mg protein (4 day), 5.69 ± 0.805 U/mg protein (7 day) in control group to 2.89 ± 0.77 U/mg protein (4 day), 1.92 ± 0.266 U/mg protein (7 day) in multi-metal treated group.

Fig. 5.34: Catalase (CAT) released from control and multi-metal (Hg+Cd) exposed fish macrophages. Hg, Cd (4 day) P< 0.05; Hg, Cd(7day) P< 0.02.

5.2.2.4. Effect of multi- metal exposure on superoxide dismutase (SOD) activity of fish macrophages

There was a significance increase in superoxide dismutase activity from 0.0096±0.0004 U/mg protein (4 day), 0.0095±0.0004 U/mg protein (7 day) in control group to 0.195±0.017 U/mg protein (4 day), 0.276±0.027 U/mg protein (7 day) in multi-metal treated group.

Fig. 5.35: Superoxide dismutase (SOD) released from control and multi-metal exposed fish macrophages. Hg (4 day) P < 0.02; Cd (4 day) P < 0.05; Hg, Cd (7 day) P < 0.01.

5.2.2.5. Effect of multi- metal exposure on glutathione S- transferase (GST) activity of fish macrophages

There was a significance decrease in glutathione S-transferase activity from 31.61 ± 1.76 nmoles/min/mg protein (4 day), 30.68 ± 0.50 nmoles/min/mg protein (7 day) in control group to 20.13 ± 0.11 nmoles/min/mg protein (4 day), 17.07 ± 3.27 nmoles/min/mg protein (7 day) in multi-metal treated group.

Fig. 5.36: Glutathione S-transferase (GST) activity in macrophages of fish treated simultaneously with mercury and cadmium. Hg, Cd (4 day) P< 0.01; Hg, Cd (7 day) P<

0.05.

5.2.2.6. Effect of multi- metal exposure on glutathione peroxidase (GPx) activity of fish macrophages

There was a significance decrease in glutathione peroxidase activity from 7.60 ± 0.77 nmoles/min/mg protein (4 day), 7.72 ± 1.05 nmoles/min/mg protein (7 day) in control group to 3.34 ± 0.28 nmoles/min/mg protein (4 day), 2.60 ± 0.29 nmoles/min/mg protein (7 day) in multi-metal treated group.

Fig.5.37: Glutathione peroxidase (GPx) activity in macrophages of fish treated simultaneously with mercury and cadmium. Hg, Cd (4 day) P< 0.01; Hg, Cd (7 day) P< 0.025.

5.2.2.7. Effect of multi- metal exposure on glutathione reductase (GR) activity of fish macrophages

There was a significance decrease in glutathione reductase activity from 6.32 ± 0.538 nmoles/min/mg protein (4 day), 6.13 ± 0.511 nmoles/min/mg protein (7 day) in control group to 2.40 ± 0.11 nmoles/min/mg protein (4 day), 1.33 ± 0.489 nmoles/min/mg protein (7 day) in multi-metal treated group.

Fig. 5.38: Glutathione reductase (GR) activity in macrophages of fish treated simultaneously with mercury and cadmium. Hg, Cd (4 day) P< 0.025; Hg, Cd (7 day)

P< 0.05.

5.2.2.8. Effect of multi-metal exposure on reduced glutathione (GSH) activity of fish macrophages

There was a significance decrease in reduced glutathione activity from 0.338 ± 0.053 nmoles/g tissue (4 day), 0.329 ± 0.014 nmoles/g tissue (7 day) in control group to 0.155 ± 0.028 nmoles/g tissue (4 day) and 0.096 ± 0.003 nmoles/g tissue (7 day) in multimetal treated group.

Fig. 5.39: Reduced glutathione (GSH) consumed in macrophages of fish treated simultaneously with mercury and cadmium. Hg, Cd (4 day) P< 0.05; Hg, Cd (7 day) P<

0.01.

5.2.3. Study of effect of mercuric chloride and cadmium chloride simultaneously on innate immune responses in macrophages from fish *Channa punctatus*

5.2.3.1. Effect of multi-metal exposure on phagocytic activity of fish macrophages

There was a significant decrease in phagocytic activity from 21739±780.63 % (4 day), 21628±548.26 % (7 day) in control group to 11212.8±481.30 % (4 day), 8378.81±1213.94 % (7 day) in multi-metal treated group.

Fig 5.40: Phagocytic activity in macrophages of fish treated simultaneously with mercury and cadmium. Hg (4 day) P<0.02; Hg, Cd (7 day) P<0.05; Cd (4 day) P<

5.2.3.2. Effect of multi-metal exposure on intracellular killing activity of fish macrophages

There was a significant increase in bacterial viability in multi-metal treated group at 60 min as compared to the control group.

Fig. 5.41: Intracellular killing activity in macrophages of fish treated simultaneously with mercury and cadmium. 4 day- Hg (P<0.05); Cd (P<0.0057 day- Hg (P<0.01);

Cd(P<0.025).

5.2.3.3. Effect of multi- metal exposure on cell adhesion of fish macrophages

There was a significant decrease in cell adhesion in multi-metal treated group at 60 min as compared to the control group.

Fig. 5.42: Cell adhesion in macrophages of fish treated simultaneously with mercury and cadmium. 4 day- Hg (P<0.025); Cd (P<0.004) 7 day- Hg (P<0.01); Cd (P<0.025).

5.2.3.4. Effect of multi-metal exposure on nitric oxide (NO) release of fish macrophages

There was a significant decrease in nitric oxide release from $52.48\pm2.42 \mu M$ (4 day), $52.94\pm1.96 \mu M$ (7 day) in control group to $16.60 \pm 2.61 \mu M$ (4 day) and $10.65\pm1.35 \mu M$ (7 day) in multi-metal treated group.

Fig. 5.43: Nitric oxide release in macrophages of fish treated simultaneously with mercury and cadmium. Hg (4 day) P<0.02; Cd (7 day) P<0.01; Hg, Cd (7 day) P<0.05.

5.2.3.5. Effect of multi-metal exposure on myeloperoxidase (MPO) release of fish macrophages

There was a significant decrease in myeloperoxidase release from 42.85 ± 0.36 (4 day), 43.26 ± 0.36 (7 day) in control group to 17.83 ± 1.60 (4 day), 12.02 ± 1.76 (7 day) in multimetal treated group.

Fig. 5.44: Myeloperoxidase release in macrophages of fish treated simultaneously with mercury and cadmium. Hg, Cd (4 day) P<0.02; Hg (7 day) P<0.05; Cd (7 day) P<0.04.

5.2.3.6. Effect of multi- metal exposure on TNF-arelease of fish macrophages

There was a significant increase in TNF- α release in multi-metal treated group both from cell supernatant and serum as compared to the control group.

Fig 5.45(A): TNF- α released from cell supernatant of multi- metal treated group. (B) TNF- α released from serum of multi- metal treated group. Hg (4 day) P<0.02; Hg, Cd (7 day) P<0.05; Cd (4 day) P<0.01.

Chapter-5

5.2.3.7. Effect of multi- metal exposure on IL- 6 release of fish macrophages

There was a significant increase in IL-6 release from 0.0423±0.005 (4 day), 0.0473±0.002 (7 day) in control group to 0.069±0.002 (4 day), 0.078±0.003 (7 day) in multi-metal treated group.

Fig 5.46: IL-6 released from plasma of multi- metal treated group. Hg (4 day) P<0.02; Hg, Cd (7 day) P< 0.05; Cd (4 day) P< 0.01.

5.3. Statistical analysis (one way ANOVA and isobologram)

5.3.1. One way ANOVA

Table 5.3: Dose levels of Hg (mg/L) and NO (μ M) release after the exposure of Hg for

Dose						No
Level	1.2	0.6	0.3	0.15	0.075	Dose
Obs	D1	D2	D3	D4	D5	Control
1	54	48	18	38	48	53
2	55	49	18	35	49	53
3	57	50	17	39	48	52
4	55	53	17	36	46	53
Mean						
NO	55.25	50	17.5975	37	47.75	52.775

7 days

Table 5.4: Dose levels of Cd (mg/L) and NO (μ M) release after the exposure of Cd for 7

days

Dose						No
Level	7.84	3.92	1.96	0.98	0.49	Dose
Obs	D1	D2	D3	D4	D5	Control
1	68	50	24	43	51	53
2	61	49	23	44	50	53
3	62	44	25	45	50	52
4	65	41	24	44	49	53
Mean						
NO	64	46	24	44	50	52.775

Table 5.5: ANOVA single factor for NO release of Hg without control as separate

group

Null hypothesis: No effects due to treatments

SUMMARY						
Groups	Count	Sum	Average	Variance		
Column 1	4	221	55.25	1.583333		
Column 2	4	200	50	4.666667		
Column 3	4	70.39	17.5975	0.135892		
Column 4	4	148	37	3.333333		
Column 5	4	191	47.75	1.583333		
ANOVA						
Source of						
Variation	SS	df	MS	F	P-value	F crit
Between					5.36E-	
Groups	3567.81	4	891.9526	394.58	15	3.055568
Within Groups	33.90768	15	2.260512			
Total	3601.718	19				

Table 5.6: ANOVA single factor for NO release of Hg with control as separate group

SUMMARY						
Groups	Count	Sum	Average	Variance		
Column 1	4	221	55.25	1.583333		
Column 2	4	200	50	4.666667		
Column 3	4	70.39	17.5975	0.135892		
Column 4	4	148	37	3.333333		
Column 5	4	191	47.75	1.583333		
Column 6	4	211.1	52.775	0.275567		
ANOVA						
Source of						
Variation	SS	df	MS	F	P-value	F crit
Between					6.47E-	
Groups	3990.098	5	798.0196	413.5486	18	2.772853
Within Groups	34.73438	18	1.929688			
Total	4024.832	23				

SUMMARY						
Groups	Count	Sum	Average	Variance		
Column 1	4	256	64	10		
Column 2	4	184	46	18		
Column 3	4	96	24	0.666667		
Column 4	4	176	44	0.666667		
Column 5	4	200	50	0.666667		
ANOVA						
Source of						
Variation	SS	df	MS	F	P-value	F crit
Between					1.23E-	
Groups	3308.8	4	827.2	137.8667	11	3.055568
Within Groups	90	15	6			
Total	3398.8	19				

Table 5.7: ANOVA single factor for NO release of Cd without control as separate group

Table 5.8: ANOVA single factor for NO release of Cd with control as separate group

SUMMARY				
Groups	Count	Sum	Average	Variance
Column 1	4	256	64	10
Column 2	4	184	46	18
Column 3	4	96	24	0.666667
Column 4	4	176	44	0.666667
Column 5	4	200	50	0.666667
Column 6	4	211.1	52.775	0.275567

SS	df	MS	F	P-value	F crit
				1.06E-	
3480.402	5	696.0804	137.9489	13	2.772853
90.8267	18	5.045928			
3571.229	23				
	<i>SS</i> 3480.402 90.8267 3571.229	SS df 3480.402 5 90.8267 18 3571.229 23	SS df MS 3480.402 5 696.0804 90.8267 18 5.045928 3571.229 23	SS df MS F 3480.402 5 696.0804 137.9489 90.8267 18 5.045928 137.9489 3571.229 23	SS df MS F P-value 3480.402 5 696.0804 137.9489 13 90.8267 18 5.045928 13 13 3571.229 23 23 13 13

Table 5.9: Dose levels of Hg (mg/L) and TNF- α (pg/ml) release after the exposure of Hg for 7 days

						No
Dose Level	1.2	0.6	0.3	0.15	0.075	Dose
Obs	D1	D2	D3	D4	D5	Control
1	55	142	138	123	90.13	97
2	59	144	131	130	98.99	98
3	60.5	119	130	115	110	99
4	61.2	123	135	128	103	97
Mean TNF- α	58.925	132	133.5	124	100.53	97.75

Table 5.10: Dose levels of Cd (mg/L) and TNF- α (pg/ml) release after the exposure of Cd for 7 days

						No
Dose Level	7.84	3.92	1.96	0.98	0.49	Dose
Obs	D1	D2	D3	D4	D5	Control
1	83	138	125	110	92.13	97
2	72	133.2	122	109	89.22	98
3	61.5	130	128	123	85	99
4	85	131	126	117	98	97
Mean TNF- α	75.375	133.05	125.25	114.75	91.0875	97.75

Table 5.11: ANOVA single factor for TNF- α release of Hg without control as separate

group

SUMMARY						
Groups	Count	Sum	Average	Variance		
Column 1	4	235.7	58.925	7.689167		
Column 2	4	528	132	164.6667		
Column 3	4	534	133.5	13.66667		
Column 4	4	496	124	44.66667		
Column 5	4	402.12	100.53	68.77113		
ANOVA						
Source of					Р-	
Variation	SS	df	MS	F	value	F crit
Between					2.54E-	
Groups	15721.47	4	3930.368	65.62419	09	3.055568
Within Groups	000 2000	15	E0 00206			

Within Groups	898.3809	15 59.89206
Total	16619.85	19

Table 5.12: ANOVA single factor for TNF- α release of Hg with control as separate group

SUMMARY						
Groups	Count	Sum	Average	Variance		
Column 1	4	235.7	58.925	7.689167		
Column 2	4	528	132	164.6667		
Column 3	4	534	133.5	13.66667		
Column 4	4	496	124	44.66667		
Column 5	4	402.12	100.53	68.77113		
Column 6	4	391	97.75	0.916667		
ANOVA						
Source of						
Variation	SS	df	MS	F	P-value	F crit
					7.17E-	
Between Groups	16204.76	5	3240.952	64.73769	11	2.772853
Within Groups	901.1309	18	50.06283			
Total	17105.89	23				

9913.645

Total

Table 5.13: ANOVA single factor for TNF- α release of Cd without control as separate group

SUMMARY						
Groups	Count	Sum	Average	Variance		
Column 1	4	301.5	75.375	118.2292		
Column 2	4	532.2	133.05	12.67667		
Column 3	4	501	125.25	6.25		
Column 4	4	459	114.75	42.91667		
Column 5	4	364.35	91.0875	29.80489		
ANOVA						
Source of						
Variation	SS	df	MS	F	P-value	F crit
Between					8.43E-	
Groups	9284.013	4	2321.003	55.29427	09	3.055568
Within Groups	629.6322	15	41.97548			

19

Table	5.14:	ANOVA	single	factor	for	TNF-	α	release	of	Cd	with	control	as	separate
group														

SUMMARY						
Groups	Count	Sum	Average	Variance		
Column 1	4	301.5	75.375	118.2292		
Column 2	4	532.2	133.05	12.67667		
Column 3	4	501	125.25	6.25		
Column 4	4	459	114.75	42.91667		
Column 5	4	364.35	91.0875	29.80489		
Column 6	4	391	97.75	0.916667		
ANOVA						
Source of					Р-	
Variation	SS	df	MS	F	value	F crit
Between					2.91E-	
Groups	9627.591	5	1925.518	54.80756	10	2.772853
Within Groups	632.3822	18	35.13234			
Total	10259.97	23				

Inference: The null hypothesis of no effects due to treatment is rejected at 0.001 percent level. Thus, treatments are significant.

5.3.2. Isobologram: A mathematical model to study interactivity

Based on the nature of the experimental data, a linear functional form ($Z = \alpha + \beta X$) was chosen to represent the pure and interactive effects of Hg and Cd on TNF- α release.

For pure effects, $Z_1 = \alpha_1 + \beta_1 X_1$ and $Z_2 = \alpha_2 + \beta_2 X_2$ were estimated for Hg and Cd respectively and for the interactive effects, $Z_3 = \alpha_3 + \beta_3$. (X₁, X₂) was estimated. All three are linear regressions run on the basis of experimental data.

Final total effect,

 $Z = Z_1 + Z_2 + Z_3$, which is the sum of pure and interactive effects.

Setting Z = 400 pg/ml, we get the isobologram for TNF- α . This is shown in the following figure. The nature of the curve is suggestive of synergy.

Fig. 5.47: Isobologram for TNF- α release

5.4. Relative gene expression quantification of tumor necrosis factor (TNF- α) and interleukin-6 (IL-6) gene using 18S gene as endogenous control in the intestine of *Channa punctatus* after the simultaneous exposure of mercury and cadmium for 7 days.

5.4.1. Quantitative and Qualitative analysis of total RNA

•

Sl. No.	Sample	Conc.(ng / µl)	OD _{A260-280}
1	S1 (Control)	415.6	2.03
2	S2 (Hg treated)	562.3	1.98
3	S3 (Cd treated)	623.4	2.01
4	S4 (Hg + Cd treated)	510.5	2.02

Table 5.15: Nanodrop reading of total RNA

Fig. 5.48: 1 % denaturing agarose gel electrophoresis of total RNA of all 4 samples

 Table 5.16: Sequences of primers used in gene expression analysis and accession

 numbers. (Teles *et al.*, 2011).

Gene	Forward Primer	Reverse Primer	Accession
			number
TNF-	CGCTGACACAGTGCAGTGGA	TCCCCGATGGAGTCCGAATA	AJ401677
α	TTTCAGAAGCCCGTGGAAGAGA	TCTTTGACCAGCCCTATCAGCA	DQ866150
IL-6	CGAGCAATAACAGGTCTGTG	GGGCAGGGACTTAATCAA	AF243428.2
185			

5.4.2. Effect of mercury and cadmium on TNF-α, IL-6 and 18S (as reference) expression after 7 days of exposure

Fig. 5.49: TNF- α , IL-6 and 18S (as reference) expression after the 7 days exposure of mercury and cadmium.

Fig. 5.50: Amplification curves of TNF- α , IL-6 mRNA (targets) and 18S mRNA (reference). Figure shows fluorescence of TNF- α , IL-6 (targets) and 18S (reference) mRNA amplification in S1- untreated group, which served as control, S2- Hg treated, S3- Cd treated and S4- Hg+ Cd treated in intestinal tissues of *C. punctata* after exposure to 0.3 mg/L (96 LD₅₀/6) Hg and 1.96 mg/L (96 LD₅₀/6) mg/L Cd for 7 days.

Fig. 5.51: Melt Curve of TNF-α (Target)

Fig. 5.52: Melt Curve of IL-6 (Target)

Fig. 5.53: Melt Curve of 18S (Reference)