CHAPTER – 3

MATERIALS $GC_{skew} = \frac{G - C}{G + C}$ $AT_{skew} = \frac{A - NIETFHOD}{A + T}$ $RSCU = \frac{g_{ij}}{\sum_{j}^{mi} g_{ij}} n_{i}$ $CAI = \exp \frac{1}{L} \sum_{k=1}^{L} \ln w_{c(k)}$ $TAIg = \left(\prod_{k=1}^{lg} W_{i_{kg}}\right)^{1/lg}$

3. Materials and Methods

3.1. Sequence Data and Resources

Human proto-oncogene, oncogene and tumour suppressor gene record was obtained from the web site (http://cbio.mskcc.org/CancerGenes) (Hahn and Weinberg 2002, Higgins *et al.* 2007). A literature search was performed to determine the role of the specific gene in cancer development. Any genes whose role as a proto-oncogene/oncogene or tumour suppressor was still questionable were not included in the final list. Complete nucleotide coding sequence (cds) for each gene was then retrieved from National Center for Biotechnology Information (NCBI) GenBank database (http://www.ncbi.nlm.nih.gov). We selected only those coding sequences which are an exact multiple of 3-base with perfect start codon (ATG, GTG, CTG or TTG) at the beginning of cds and stop codon (TAA, TAG or TGA) at the end of cds, devoid of any unknown bases (N) and any intercalary stop codon in the entire sequence. Finally, we selected eighty-two coding sequences for proto-oncogenes/oncogenes and sixty-three coding sequences for tumour suppressor genes that fulfill the aforementioned criteria and used in our CUB analysis (Table 1, Table 2).

		I ENICTU (hn)
ABL (ABLI)	IVI 14752.1	3393
$\begin{array}{c} 2 \\ 2 \\ \end{array} $		3049
3 AKTI		1443
$\begin{array}{c} 4 \\ F \\ \end{array}$		444
D AIFI	BC029619.1	810
6 BCLITA	GU324937.1	2508
7 BCL2	AY220759.1	720
8 BCL3	M31/32.1	1341
9 BCL6	EU883531.1	1953
10 BCR	007000.1	3816
11 BRAF	EU6001/1.1	2301
12 CARD11	BC111719.1	3444
13 CBLB	U26710.1	2949
14 CBLC	BC006122.1	678
15 CCND1 (Cycl	lin D1) M64349.1	888
16 CCND2 (Cycl	<i>lin D2</i>) M90813.1	870
17 CCND3 (Cycl	<i>lin D3</i>) M90814.1	879
18 <i>CDX2</i>	KJ081251.1	816
19 CTNNB1	AY463360.1	2346
20 <i>DDB2</i>	AY220533.1	1284
21 <i>DDIT3</i>	AY880949.1	510
22 DDX6	BC039826.1	564
23 <u>DEK</u>	BC035259.1	1128
24 <mark>EGFR</mark>	U48722.1	1218
25 <i>ELK4</i>	BC063676.1	1218
26 <mark>ERBB2</mark>	AY208911.1	3768
27 <i>ETV4</i>	BC016623.1	1455
28 <i>ETV6</i>	BC043399.1	1359
29 <i>EVI1</i>	GQ352634.1	3156
30 <i>EWSR1</i>	BC011048.1	1968
31 <i>FEV</i>	BC023511.2	717
32 FGFR1	AY585209.1	2469
33 FGFR1OP	BC037785.1	450
34 <i>FGFR2</i>	M97193.1	2469
35 FUS	CR456747.1	1581
36 GOLGA5	BC023021.1	2196
37 GOPC	KF420123.1	1224
38 <i>HMGA1</i>	BC067083.1	324
39 <i>HMGA2</i>	AY601863.1	279
40 HRAS	EF015887.1	513

Table 1: Accession numbers of coding sequences (cds) of eighty-two human protooncogenes/oncogenes with their lengths (bp)

Table 1 continued

CDS NO.	GENES	ACCESSION NO.	LENGTH (bp)
41	IRF4	BC015752.1	1356
42	<mark>JUN</mark>	J04111.1	996
43	KIT	U63834.1	2931
44	KRAS	JX512447.1	570
45	LCK	M36881.1	1530
46	LMO2	BC034041.1	477
47	<mark>MAF</mark>	AF540388.1	1113
48	<mark>MAFB</mark>	BC036689.1	972
49	MAML2	AY040322.1	3462
50	MDM2	GQ848196.1	1401
51	MET	J02958.1	4227
52	MITF	BC065243.1	1260
53	MLL	BT007215.1	1707
54	MPL	M90103.1	1740
55	<mark>MYB</mark>	AF104863.1	1923
56	MYC	AY214166.1	1320
57	MYCL1	BC011864.2	621
58	MYCN	BC002712.2	1395
59	NCOA4	BC001562.1	1845
60	NFKB2	AY865619.1	2703
61	NRAS	EU332857.1	570
62	NTRK1	BC136554.1	2373
63	NUP214	BC105998.1	6243
64	PAX8	L19606.1	1353
65	PDGFB	BC077725.1	726
66	PIK3CA	BC113601.1	3207
67	PIM1	M27903.1	942
68	PLAG1	BC075047.2	1503
69	PPARG	AB451337.1	1518
70	PTPN11	BC030949.1	153
71	<mark>RAF1</mark>	AY271661.1	1947
72	REL	DQ314888.1	1860
73	<mark>RET</mark>	BC004257.1	3219
74	<mark>ROS1</mark>	M34353.1	7044
75	SMO	AH007453.1	2364
76	SS18	BC096222.1	1257
77	TCL1A	BC014024.1	345
78	TET2	BC150180.1	1914
79	TFG	BC041600.1	1101
80	TLX1	BC130530.1	774
81	TPR	U69668.1	7092
82	USP6	AY143550.1	4221

CDS NO: Coding sequence number; Yellow color marked genes represent proto-oncogenes

CDS NO.	GENES	ACCESSION NO.	LENGTH (bp)
1	APC	M74088.1	8532
2	ARHGEF12	NG 027960.1	4635
3	ATM	U33841.1	9171
4	BCL11B	NM 138576.3	2685
5	BLM	AY886902.1	4254
6	BMPR1A	BC028383.1	1599
7	BRCA1	U14680.1	5592
8	BRCA2	DQ897648.1	7950
9	CARS	BC002880.2	2247
10	CBFA2T3	BC062624.1	1848
11	CDH1	GU371438.1	2649
12	CDH11	BC013609.1	2391
13	CDK6	AY128534.1	981
14	CDKN2C	AY094608.1	507
15	CEBPA	EU048234.1	1077
16	CHEK2	CU012979.1	1761
17	CREB1	BC095407.1	984
18	CREBBP (CBP)	U47741.1	7329
19	CYLD	BC012342.1	2862
20	DDX5	BC016027.1	1845
21	EXT1	BC001174.1	2241
22	EXT2	U62740.1	2157
23	FBXW7	BC117246.1	2124
24	FH	U59309.1	1533
25	FLT3	BC126350.1	2982
26	FOXP1	BC071893.1	345
27	GPC3	L47125.1	1743
28	IDH1	BC093020.1	1245
29	IL2	K02056.1	462
30	JAK2	AY973034.1	3399
31	MAP2K4	DQ015703.1	1200
32	MDM4	BC067299.1	1473
33	MEN1	U93237.1	1848
34	MLH1	BC006850.1	2271
35	MSH2	AY601851.1	2805
36	NF1	M89914.1	8520
37	NF2	BC020257.1	1788
38	NOTCH1	CR457221.1	426
39	NPM1	M28699.1	885
40	NR4A3	NG_028910.1	1914

Table 2: Accession numbers of coding sequences (cds) of sixty-three human tumour

 suppressor genes with their lengths (bp)

Table 2 continued

	CENES		
CDS NO.	GENES	AUCESSION NO.	
41	NUP98	U41815.1	2763
42	PALB2 (BRCA2)	BC044254.2	3561
43	PML	BC000080.2	2346
44	PTEN	DQ073384.1	1212
45	RB1	BC039060.1	2787
46	RUNX1	BC136381.1	1443
47	SDHB	U17248.1	843
48	SDHD	BC015992.1	480
49	SMARCA4	BC136644.1	5046
50	SMARCB1	BC143667.1	1131
51	SOCS1	DQ086801.1	636
52	STK11 (LKB1)	BC019334.1	1302
53	SUFU	BC013291.2	1455
54	SUZ12	NM_015355.2	2220
55	SYK	BC001645.2	1908
56	TCF3	BC110580.1	1977
57	TNFAIP3	BC114480.1	2373
58	TP53	U94788.1	1182
59	TSC1	AB190910.1	1365
60	TSC2	BC150300.1	5355
61	VHL	AF010238.1	642
62	WRN	AY442327.1	4299
63	WT1	AY245105.1	1350

CDS NO: Coding sequence number

3.2. Analysis of synonymous codon usage bias

Two amino acids methionine and tryptophan are encoded by single codon ATG and TGG, respectively and three stop codons (TAA, TAG, and TGA) would not reveal any usage bias and therefore discarded from the calculation. We measured the non-uniform usage of synonymous codons for the proto-oncogenes, oncogenes and tumour suppressor genes by analyzing several genetic indices given below-

3.2.1. Nucleotide Composition Analysis

Compositional properties for each of the selected cds were calculated as follows:

- (a) Occurrence of the nucleotides (A, T, G, C) overall frequency.
- (b) Frequency of the nucleotide at third position of synonymous codon (A₃, T₃, G₃, C₃).
- (c) Overall GC and AT contents.
- (d) Occurrence of overall frequency of the nucleotide (G+C) % at first (GC₁%), second (GC₂%) and third (GC₃%) position of synonymous codon.
- (e) Average of the nucleotide G+C contents at first and second (GC₁₂) position of synonymous codons.

3.2.2. Analysis of nucleotide skewness

Nucleotide composition in the leading and lagging strands of DNA usually differs as a result of asymmetry in biochemical processes such as DNA replication and repair (Sueoka 1962). This creates a variation in synonymous codon usage between leading and lagging strands. The distribution of different oligomers is skewed between leading and lagging DNA strands (Salzberg *et al.* 1998), but the trend is

most obvious when considering a difference in the number of Gs and Cs along a single DNA strand. This difference usually measured as:

$$GC_{skew} = \frac{G-C}{G+C}$$

Positive GC skew indicates richness of G over C and negative as C over G (Tillier and Collins 2000). Similarly, AT skew also varies between leading and lagging strand and can be defined as:

$$AT_{skew} = \frac{A - T}{A + T}$$

Positive AT skew represents overloading of A over T and negative with overloading T over A (Tillier and Collins 2000).

3.2.3. Effective Number of Codons (ENC) Analysis

ENC is generally used to quantify the codon usage bias of a gene that is independent of the gene length and number of amino acids (Wright 1990). The values of *ENC* ranged from 20 indicating strong codon bias in the gene using only one synonymous codon within a family for the corresponding amino acid, to 61 indicating no bias in the gene using all synonymous codons equally for the corresponding amino acid (Wright 1990). This measure was computed as per Wright (1990) to estimate the codon usage affected by GC_{3s} under mutation pressure or genetic drifts, among the coding sequences of proto-oncogene/oncogenes and tumour suppressor genes:

$$ENC^{expected} = 2 + s + \frac{29}{s^2 + (1 - s^2)}$$

where *s* denotes the given GC_3 % values (Wright 1990).

3.2.4. Frequency of Optimal Codon (Fop) Analysis

Fop is a measure of codon usage bias in a gene (Ikemura 1985). *Fop* values represent the ratio of the number of optimal codons used to the total number of synonymous codons (Ikemura 1981). The *Fop* value ranges from 0.36 for a gene showing uniform codon usage bias to 1 for a gene showing strong codon usage bias (Stenico *et al.* 1994). *Fop* value for each selected coding sequence was calculated using the formula given by Lavner and Kotler (2005) which is as follows:

$$FOP_s(g) = \frac{1}{N} \sum_i n_i(g)$$

where the subscript 's' stands for "simple" and $n_i(g)$ is the count of the codon *i* in the gene *g*, *N* is the total number of codons and sum is taken over all the optimal codons (Lavner and Kotlar 2005). The *FOP* measure in this way is affected by amino acid usage because if synonymous codon usage is random, the 2-fold degeneracy of amino acids would have *FOP* value 0.5, whereas 4-fold degeneracy of amino acids would have *FOP* value 0.25.

Therefore, in order to obtain a measure which is independent of amino acid composition, each codon count in the above equation is multiplied by the corresponding amino acid.

$$FOP(g) = \frac{1}{N} \sum_{i} syn(i)n_i(g)$$

where syn(i) is the degeneracy of the amino acid coded by *i*. Thus, in this way a gene close to random synonymous codon usage will have *FOP* value close to 1 regardless of its amino acid composition (Lavner and Kotlar 2005).

3.2.5. Relative Synonymous Codon Usage (RSCU) Analysis

RSCU is defined as the observed frequency of a codon divided by the expected frequency if all codons are used equally for any particular amino acid (Sharp and Li 1986a). *RSCU* values of codons for all the selected cds of tumour suppressor genes were calculated as follows:

$$RSCU = \frac{g_{ij}}{\sum_{j}^{ni} g_{ij}} n_i$$

where g_{ij} is the observed number of the *i*th codon for the *j*th amino acid which has n_i kinds of synonymous codons (Butt *et al.* 2014).

The *RSCU* value equal to unity represents that the codons are used equally or randomly for the corresponding amino acid and no bias for that amino acid (Sharp and Li 1986b). The *RSCU* value greater than one represents positive codon usage bias with greater usage of the most abundant codons whereas the *RSCU* value less than one represents a negative codon usage bias using the least abundant codons. Moreover, synonymous codons with *RSCU* values >1.6 are considered as over-represented codons and <0.6 as under-represented codons, respectively (Wong *et al.* 2010).

3.2.6. Relative dinucleotide abundance

The relative abundance of dinucleotide in the coding sequences of protooncogene/oncogene and tumour suppressor gene in human was calculated using the approach of Chiusano and his co-workers (Chiusano et al. 2000). The odd ratio for each dinucleotide was computed using the following formula:

$$P_{xy} = \frac{f_{xy}}{f_y f_x}$$

where f_x and f_y denotes the frequency of the nucleotide X and Y respectively, and f_{xy} denotes the frequency of the dinucleotide XY. In our analysis, the dinucleotide with p_{xy} >1.23 is considered to be over-represented dinucleotide whereas p_{xy} <0.78 as under-represented dinucleotide in terms of relative abundance.

3.2.7. Correspondence Analysis

Correspondence analysis is generally used to investigate the major trend in codon usage variation among genes and distributes the codons in axis1 and axis2 with these trends (Perriere and Thioulouse 2002, Wang and Hickey 2007). To explore the variation in codon usage among human proto-oncogene/oncogenes and tumour suppressor genes, *RSCU* values of all cds selected in this study were used for correspondence analysis. Each cds was represented as a 59-dimensional vector, and each dimension corresponds to the *RSCU* value of one sense codon with the exception of ATG (methionine), TGG (tryptophan) and three stop codons.

3.2.8. Codon Adaptation Index (CAI) Analysis

CAI is a quantitative measure used to predict the level of gene expression on the basis of extent of bias towards codon sequence. The *CAI* values ranged from 0 for a gene (exhibiting no bias using all possible synonymous codons equally for the corresponding amino acid) to 1 for a gene (exhibiting strong codon bias using only one possible synonymous codon for the corresponding amino acid). The *CAI* value was measured as per Sharp and Li (1987) which was as follows:

$$CAI = \exp\frac{1}{L}\sum_{k=1}^{L}\ln w_{c(k)}$$

where L is the number of codons in the gene and $w_{c(k)}$ is the ω (relative adaptiveness) value for the *k*-th codon in the gene (Sharp and Li 1987).

In our study *CAI* value was calculated using the approach of Puigbo *et al.*, for human codon usage as reference set (Puigbo *et al.* 2008) (available at: http://genomes.urv.es/CAIcal).

3.2.9. tRNA Adaptation Index (tAI)

The parameter *tAI* measures the degree of adaptation of a gene (cds) to its genomic *tRNA* pool available for translation. It estimates the accessibility of *tRNAs* for each codon. Since an anticodon can identify several codons with different competence weights due to wobble interactions and hence the codon-anticodon pairing is not unique in terms of base complementarities in the coding sequence of the gene. Therefore, *tAI* is a good measure for predicting the translational selection in a genome which was formulated by dos Reis *et al.*, as follows:

$$tAIg = \left(\prod_{k=1}^{\lg} Wi_{kg}\right)^{1/2}$$

where Wi_{kg} is the relative adaptiveness value of the codon defined by the k_{th} position of the gene g and lg is the length of the gene g in terms of codon (excluding stop codons) (dos Reis et al. 2004). The *tAI* value for each cds of the selected protooncogene/oncogene and tumour suppressor gene pool was calculated using human *tRNA* gene copy numbers and implemented in visual gene developer 1.7 software (Jung and McDonald 2011).

3.3. Analysis

3.3.1. Correlation analysis

Correlation analysis was used to identify the relationship between the pattern of synonymous codon usage and the genetic indices used for the present study. The correlation analysis was done using Pearson's rank correlation method.

3.3.2. Software used

The above mentioned genetic indices were estimated in a PERL scripting language program developed by us to measure the CUB on the selected coding sequences of proto-oncogene, oncogene and tumour suppressor genes. All statistical analyses were carried out using the SPSS software. Cluster analysis (Heat map) of correlation coefficient of codons with GC₃ values of codons among the coding sequences were clustered using a hierarchical clustering method implemented in NetWalker software (Komurov *et al.* 2010).