Chapter 4

Transaction Costs Associated with Stock Trade

Introduction

There are a number of causes that can affect an investor's entrance (buy) into or departure (sell) out of a given stock and/or area. Depending on the investor and his or her objectives and investing time frame, the importance of timing the entry will vary. Obviously, the shorter the time frame the more important the entry; particular entries matter little to long-term (five years or more) investors. All investors should be alert of some of the more common market moving powers that can shake a stock's price, so they can make better entries and catch an extra percent or two in return. The items which can substantially affect the average day's trading are discussed in this chapter.

Literature Review

Various exact reviews have observed the seasonality in all aspects of the world. This area gives an outline of the study of the literature, that have observed Day-of-the-Week effect in international context. The experimental evidence from literature demonstrates that the Day-of-the-Week effect still exists in financial markets however no hypothetical clarification has fulfilled the researchers, regardless of number of endeavors made by the academicians to clarify the Day-of-the-Week effect and Holiday Effect.

Keim and Stambaugh (1984) examine stock returns in the Standard and Poor's index in the vicinity of 1928 and 1982. In this time period the stock market would once in a while trade on Saturday. They research if the span of the weekend impacts the returns on Fridays and Mondays. Keim and Stambaugh find that Fridays trailed by one day weekends (in this manner a trading Saturday) accomplishes a drastically lower return than that of Fridays followed by two weekends. However, Mondays don't demonstrate a huge contrast in returns after a one or a two-day end of the week.

Fields (1931) proposes that the best trading day of the week is Saturday. Another imperative review on the weekend effect is by Cross (1973), who examinations the Friday-Monday data for the Standard and Poor's Composite Stock Index from January 1953 to December 1970 and finds an expansion consequently on Fridays and a diminishing consequently on Mondays. French (1980) augments the examination until 1977 and furthermore reports negative returns on Mondays. Facilitate commitments by Gibbons and Hess (1981), Keim and Stambaugh (1984), Rogalski (1984), and Smirlock and Starks (1986) likewise locate the positive-Friday/negative-Monday design. Connolly (1999) additionally takes into account heteroscedasticity yet at the same time recognizes a Monday impact from the mid-1970s. Rystrom and Benson (1989) clarify the presence of the day-of-the-week effect on the premise of the psychology of investors who believed that Monday is a 'difficult' day of the week and have a more positive impression of Friday. Ariel (1990) contends against an association between the weekend and the Monday effect. Agrawal and Tandon (1994) examine 19 equity markets around the globe, and discover the day-of-the -week effect in most developed markets. Sias and Starks (1995) relate the weekend effect with stocks in large portfolios of institutional investors. Research led by Fortune (1998, 1999) demonstrates that it tends to vanish and

is a marvel with two parts: the first is the 'weekend drift effect', i.e. stock prices tend to decrease over weekends yet ascend amid the trading week; the second is the 'weekend volatility effect', i.e. the volatility of returns amid weekends is less every day than that over coterminous trading days.

With respect to the part of short-selling, Kazemi, Zhai, He and Cai (2013) and Chen and Singal (2003) clarify the weekend effect as coming about because of the end of speculative positions on Fridays and the building up of new short positions on Mondays by traders. Be that as it may, the aftereffects of the review by Christophe, Ferri and Angel (2007) don't bolster this conclusion. Additional proof is given by Singal and Tayal (2014) for the futures market, Olson, Chou, Mossman (2011) who complete different breakpoint and stability tests, and Racicot (2011) who utilizes spectral analysis.

Suggestions of pre-holiday strength have showed up in the academic literature. Merill (1966) finds a misappropriated recurrence of Dow Jones Industrial Average advances on days preceded by holidays amid the 1897 to 1965 period and Fosback (1976) has noted high pre-holiday returns on S&P 500 file return.

Roll (1983) discovers high returns collecting to small firms on the trading day preceding New Year's Day. Lakonishok and Smidt (1984) take note of that "prices also rise in all deciles on the last trading day before Christmas" and conclude that "the high Christmas returns of large companies might be considered ...mystery". Jacobs and Levy (1988), in the US stock market, watch 35 percent of the ascent in stock prices in the period 1963-1982 happened on the eight trading days before a public holiday.

Barone (1990) finds that, on the average, the rate of progress on the days went before by public holiday is higher than that for the other trading days in Italian stock market.

Ariel (1990) records that the high mean return accumulating to the CRSP (Center for Research in Security Prices for Dow Jones Industrial Average) equally and value weighted indices on the trading day before holidays is measurably huge for the US market; on average the pre-holiday return breaks even with nine to fourteen times the return collecting on non-pre-holidays.

A few authors have demonstrated the connection among days and return of the stock. This review demonstrates the connection between transaction costs which is reflected through the implementation shortfall with days of the week. Extensive study in this sector is yet to be done as there is no specifically related literature available. An attempt has been made to draw a connection with transaction cost and days through return as, return has negative relationship with transaction cost. The findings from other relevant studies are summarized in Table 4.02.01.

Sl	Authors	Time	Market, Index	Observations/
#		period		Results
1.	Keim and	1928-	S & P Composite	Friday returns were
	Stambaugh	1982	Index (US)	highest
	1984			
2.	Rogalski 1984	1974-	DJIA (US)	Monday effect
		1984		occurred
3.	Cornell	1982-	S & P 500 (US)	DOW effect was
	1985	1984		found in cash market,
				but not in futures
				market.
4.	Jaffey and	1970-	ND Index and S&P	(-ve) Mon. return,
	Wasterfield	1983	composite	(+ve) Fri. return.
	1985		500 stock price index	
			(US)	
5.	Kato 1990	1.1978-	Daily returns of	Low Tues. return,
		1987	TOPIX	
		2.1982-	Intra- day returns of	High Wed. return.
		1987	TOPIX (Tokyo)	

Table 4.02.01: Summarized literature review for Day-of-the-week and holiday effect

6.	Lakonishok	1962-	NYSE odd lot sales	Trading volume was
	and Maberly	1986	and	lowest on Monday.
	1990		purchases and NYSE	
			block transactions	
			(US)	
7.	Chang	1986-	Intraday daily returns	Mon. effect for two
	et.al., 1993	1992	on 22	weeks out of a given
			foreign indices and	month.
			U.S. Index	
8.	Mittal 1994	1990-	BSE National Index	(-ve) Tue. return,
		1993		(+ve) Fri. return.
9.	Sias, Starks	1977-	market equity	The weekend effect
	(1995)	1991	capitalization,	is driven primarily
			institutional holdings,	by institutional
			daily returns and	investor trading
			volume of 1500	patterns
			institutional investors	
			on the NYSE	
10.	Poshakwale	1987-	BSE National Index	(-ve) Mon. return,
	1996	1994		(+ve) Wed return.

Wang et al.,	1.1962-	NYSE- AMEX	(-ve) Mon. return for
	1993	equally and value	first three weeks of
1997	2.1973-	weighted returns	the given month.
	1993	indices. The Nasdaq	
	3.1928-	equally and value	
	1993	weighted returns	
		indices.	
		S&P Composite	
		Index	
Fortune	January	daily close- to-close	The negative
(1998)	1980 –	data for the S&P 500	weekend drift
	June 1998		appears to have
			disappeared although
			weekends continue to
			have low volatility
Fortune	January	daily close-to-close	The weekend drift
(1999)	1980 -	data of the Dow 30,	effect is a financial
	January	the S&P 500, the	anomaly that will
	1999	Wilshire 5000, the	ultimately correct
		Nasdaq Composite,	itself.
		and the Russell	
		2000	
	1997 Fortune (1998) Fortune	1997 1973 1993 1997 2.1973- 1993 3.1928- 1993 1993 1993 507000 1993 1980 - 1000 1998 1980 - 1000 1998 1980 - 1000 1998	1993equally and value19972.1973-weighted returns1993indices. The Nasdaq3.1928-equally and value1993weighted returns1993indices.1993weighted returns1993indices.1993S&P CompositeIndexIndexFortuneJanuaryJanuarydaily close-to-close(1998)J980 –June 1998June 1998FortuneJanuaryJanuarydaily close-to-close(1999)1980 -Januarydaily close-to-close(1999)1980 -Januarythe S&P 500, theJanuarythe S&P 500, the19991999Milshire 5000, theI999Nasdaq Composite,and the Russell

14.	Anshuman	1991-	70 Frequently stocks	(-ve) Tue. return,
	and	1996	traded	(+ve) Fri. return.
	Goswami		on BSE	
	2000			
15.	Amanulla	1990-	1. BSE Sensitive	(-ve) Tue. return,
	and	1999	Index	(+ve) Wed. return.
	Thiripalraju		2. BSE National	
	2001		Index	
			3. S&P CNX Nifty	
			Index	
16.	Brooks and	1989-	South Korea Stock	Thailand and
	Persand	1996	Exchange	Malaysia
	2001		Composite Index	exhibited positive
			Kuala Lumpur	returns and negative
			Composite	Tuesday return.
			Price Index	
			Bangkok Weighted	
			Price Index	
			Taiwan Weighted	
			Price Index	
			Philippines Stock	
			Exchange	

			Composite Price		
			Index		
17.	Kiymaz and	1989-	TSE Composite Index	Highest volatility on	
	Berument	1997	(Canada)	Monday was found	
	2001		DAX Index	for Canada, Germany	
			(Germany)	and Japan and on	
			Nikkei 225 Index	Friday for UK and	
			(Japan)	US.	
			FT- 100 Index (UK)		
			NYSE Composite		
			Index (US)		
18.	Schwert	1885–	– the Dow Jones	The weekend effect	
	(2003)	1927	indexes portfolio;	seems to have	
		1928–	- the S&P composite	disappeared since the	
		2002	portfolio	1980-s	
19.	Chen, Singal	July 1962	New York Stock	Speculative short	
	(2003)	-Dec1999	(NYSE);	sales can explain the	
		Dec1972 -	Nasdaq - daily returns	weekend effect.	
		Dec1999	for stocks; Nasdaq		
		June 1988	and		
		- Dec1999	NYSE –		

		Jan 1988	monthly short interest	
		- 1999	data	
20.	Hsaio, Solt	Jan 1988	the 3:00 and closing	Presence of weekend
	(2004)	to Dec	values for the S&P	effect in the average
		2000 (678	500 index; April 1988	daily returns for
		weeks)	to December 2000	many of the tested
		April	(669 weeks) - the	portfolios till 2000.
		1994 to	CREF stock, growth,	
		Dec 2000	and money market	
		(332	account; – growth	
		weeks)	account	
21.	Nath and	1999-	S&P CNX Nifty	(+ve) Wed. return,
	Dalvi 2004	2003		(+ve) Fri. return.
22.	Draper and	1930-	S & P 500 (US)	Wednesday was four
	Paudyal	1999		times larger than the
	2005			typical pre-holiday
				returns and Monday
				effect was absent in
				pre-holiday returns.
23.	Mangala	1997-	CNX Nifty Junior	(+ve) Wed. return, (-
	and Mittal	2003		ve) Fri. return.
	2005			

24.	Boynton et	1975-	Pacific Basin Capital	Monday exhibited
	al., 2006	2001	Markets	losses and decrease in
			Research Center	volume as well.
			(Japan)	
25.	Hu et al .,	1991-	TWSE (Taiwan)	Stronger Monday
	2006	2004		effect and highest
				positive Friday
				returns were found.
26.	Christophe,	September	daily 9:30 am-4:00	Speculative short-
	Ferri, Angel	2000 -	pm data on	selling does not
	(2007)	July 2001	NASDAQ- listed	explain the Monday-
			stock	Friday difference in
				returns
27.	Olson, Chou,	1973 –	the Dow-Jones 30	The weekend effect
	Mossman,	2007	Industrials, Standard	may have already
	(2011)		and Poor's 500,	gone through its
			Standard & Poor's	entire involving
			Midcap 400, Standard	identification,
			& Poor's Smallcap	exploitation, decline,
			600, NASDAQ	reversal, and
				disappearance. There
				is no significant

			100, American Stock	weekend effect in
			Exchange (AMEX)	U.S. small stocks
			Composite indices	after about mid 2003
28.	Racicot	1970-	S&P 500 index	Spectral analysis
	(2011)	1973		confirms the Monday
				effect.
29.	Kazemi, Zhai,	January	60 market indices	During the period
	He and Cai	1980 –	from 59 countries	from 1980 to 1994,
	(2013)	present	(For all countries,	short sales can
		time	except US, major	explain the weekend
			stock index is used.	effect. During the
			For the US both the	period from 1995 to
			Dow Jones Index and	2007, the cross-
			the S&P 500 were	sectional weekend
			used)	effect cannot be
				explained by short
				sales.
30.	Singal and	1990 -	eight futures: Crude	Evidence of the
	Tayal (2014)	2012	oil, Heating Oil,	weekend effect in
			Soybeans, Sugar,	futures markets
			S&P 500 Index,	shows that security
			British Pound, 10-	prices will generally

Year Treasu	ry Note, be	biased	upwards,
and Gold	wit	h	greater
	ove	ervaluation	n for
	mo	re	volatile
	sec	urities.	
	Une	constraine	ed short
	sell	ing is	not a
	suf	ficient coi	ndition
	for	unbiased	prices

(AMEX BSE= Bombay Stock Exchange, DAX=Deutsche Aktien Indexe, DJIA = Dow Jones Industrial Average, FT=Financial Times, ND = Nikkei-Dow, NYSE= New York Stock Exchange, TOPIX= Tokyo Stock Price Index, TSE=Tokyo Stock Exchange, TWSE= Taiwan Stock Exchange, S & P = Standard and Poor).

The Week-End impact keeps on persevering notwithstanding when market balanced returns are considered for equities and treasury bills (Gibbons and Hess 1981). Anshuman and Goswami (2000) infer that settlement procedures, badla trading and measurement error don't have any huge effect on Day-of-the-Week effect. In any case, Cornell (1985) discovers measurement error and transactions costs as a reason for the specific impact. There is an inversion in Monday impact in Indian stock market after 2000, reliable with Amanulla and Thiripalraju (2001). Wednesday is reported with most elevated positive returns in the period after 2000 (Nath and Dalvi 2004; Mangala and Mittal 2005). Short seller's exercises are considered as a reason for the impact in Taiwan

stock market (Hu et al. 2006). Payment of dividend and information hypothesis are additionally viewed as in charge of Day of the week effect and further unexpected changes in exchange rates, the term structure, default risk premiums and arrival of new information on certain trading days may be viewed as a reason for the impact (Draper and Paudyal 2005).

Objective and Hypothesis

Objective

The main objective of this chapter is to identify the transaction costs associated with stock trade in stock market. To achieve this objective the following objective has been framed. To identify market timing of trade of transaction cost analysis.

Hypothesis

The following hypothesis is tested in this chapter

There is no significant association between transaction cost (measured by implementation shortfall) and market timing of the transaction.

Research question

The answer to the following research question is sought in this chapter.

Does any particular time of the trading day affect Transaction cost differently? In this research question, the impact on transaction cost (IS or, Implementation Shortfall) by the trade timing if trade timing is identified into three time zones such as First Phase Timing (from 09:30 am to 12:00 pm), Mid Phase Timing (from 12:00 pm to 14:00 pm), and Last Phase Timing (from 14:00 pm to 16:00 pm) is addressed. It is notable that in USA stock market is open at 09:30 am and close at 16:00 pm EST (Eastern Standard Time).

Research methodology

The study is conducted using the following research methodology:

Types of Research

It is an empirical research with hypothesis testing.

Universe of the Study

The universe of the study comprises of S&P 500 companies listed in USA.

The Data

The study conducts an empirical analysis based on secondary data collected from US stock market. Intraday trading data of S&P 500 Companies are selected from the US stock exchange. An appropriate sample size of 81 Stock at 95% confidence level, and 10% confidence interval are taken for the study using fair representation of all the sectors proportionately that are part of S & P 500. The review considers six months back to back intraday traded data of a trader. Not all traders can engage in short selling as a result the only focus was on buy side transaction and its analysis.

Data Analysis Tools and Techniques

Initially collected print data rearranged and the required field calculated by using JAVA platform computer software. Microsoft excel, E-views and other statistical packages are also used in conducting analysis.

Analysis and findings

The analysis and findings of this chapter are reported under following paragraph:

Association between IS with Five Transaction Days (Monday to Friday): IS

 $= C + B_1(MON) + \varepsilon$

Table 4.06.01.01: Effect of Monday trading on IS

Dependent Variable: IS Method<u>: Least</u> Squares Date: 03/16/17 Time: 20:53 Sample: 1 8892 Included observations: 8892

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C MON	11.21235 -6.830034	3.507386 8.222313	3.196783 -0.830671	0.0014 0.4062
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000078 -0.000035 299.1370 7.96E+08 -63308.62 0.690014 0.406182	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	nt var iterion rion n criter.	9.969549 299.1318 14.23991 14.24150 14.24045 1.953465

$IS = C + B_1(TUE) + \varepsilon$

Table 4.06.01.02: Effect of Tuesday trading on IS

Dependent Variable: IS Method<u>: Least</u> Squares Date: 03/16/17 Time: 20:55 Sample: 1 8892 Included observations: 8892

Variable	Coefficient	Std. Error	t-Statistic	Prob.	
C TUE	6.984772 14.23090	3.567965 7.790779	1.957635 1.826634	0.0503 0.0678	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000375 0.000263 299.0925 7.95E+08 -63307.30 3.336592 0.067788	Mean depende S.D. depende Akaike info cri Schwarz criter Hannan-Quinr Durbin-Watsor	nt var terion rion n criter.	9.969549 299.1318 14.23961 14.24120 14.24015 1.953795	

Sources: Own calculation

$IS = C + B_1(WED) + \varepsilon$

Table 4.06.01.03: Effect of Wednesday trading on IS

Dependent Variable: IS Method<u>: Least</u> Squares Date: 03/16/17 Time: 20:55 Sample: 1 8892 Included observations: 8892

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C WED	8.653870 5.597614	3.627063 7.481379	2.385917 0.748206	0.0171 0.4544
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000063 -0.000050 299.1392 7.96E+08 -63308.69 0.559813 0.454356	Mean depend S.D. depende Akaike info cri Schwarz critel Hannan-Quint Durbin-Watso	nt var terion rion n criter.	9.969549 299.1318 14.23992 14.24152 14.24046 1.953575

$IS = C + B_1(THU) + \varepsilon$

Table 4.06.01.04: Effect of Thursday trading on IS

Dependent Variable: IS Method<u>: Least</u> Squares Date: 03/16/17 Time: 20:56 Sample: 1 8892 Included observations: 8892

	002			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	9.689518	3.510170	2.760413	0.0058
THU	1.528564	8.201010	0.186387	0.8521
R-squared	0.000004	Mean dependent var		9.969549
Adjusted R-squared	-0.000109	S.D. dependent var		299.1318
S.E. of regression	299.1481	Akaike info criterion		14.23998
Sum squared resid	7.96E+08	Schwarz criterion		14.24157
Log likelihood	-63308.95	Hannan-Quinn criter.		14.24052
F-statistic	0.034740	Durbin-Watson stat		1.953365
Prob(F-statistic)	0.852145			

Sources: Own calculation

$\mathbf{IS} = \mathbf{C} + \mathbf{B}_1(\mathbf{FRI}) + \varepsilon$

Table 4.06.01.05: Effect of Friday trading on IS

Dependent Variable: IS Method<u>: Least</u> Squares Date: 03/16/17 Time: 20:56 Sample: 1 8892 Included observations: 8892

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C FRI	13.15158 -16.74238	3.524161 8.083736	3.731833 -2.071119	0.0002 0.0384
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000482 0.000370 299.0765 7.95E+08 -63306.82 4.289534 0.038376	Mean depend S.D. depende Akaike info o Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion erion n criter.	9.969549 299.1318 14.23950 14.24110 14.24004 1.954385

Interpretation: From table **4.06.01.01** to **4.06.01.05** a regression analysis is done by considering implementation shortfall as dependent variable and days are considered separately as independent variables. Among five days only Friday and Tuesday have significant association with implementation shortfall. For the rest of the days, the null hypothesis meaning that Monday, Wednesday, and Thursday has no special impact on implementation shortfall, cannot be rejected. When one observe the nature of coefficient Friday and Monday offer negative coefficient whereas if one transact in Tuesday, Wednesday and Thursday implementation shortfall would be increased but they are not statistically significant.

Association between IS with Three Time slots: IS

 $= \mathbf{C} + \mathbf{B}_1(\mathbf{FPT}) + \varepsilon$

Note: Here, FPT= First Phase Time (from 09:30 am to 12:00 pm).

Table 4.06.02.01: Effect of First Phase Time (FPT) trading on IS

Dependent Variable: IS Method <u>: Least</u> Squares Date: 03/16/17 Time: 2 Sample: 1 8892 Included observations:	6 0:57			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	10.43949	3.858447	2.705621	0.0068
FPT	-1.450455	6.778610	-0.213975	0.8306
R-squared	0.000005	Mean depend	lent var	9.969549
Adjusted R-squared	-0.000107	S.D. depende	ent var	299.1318
S.E. of regression	299.1479	Akaike info cr	iterion	14.23998
Sum squared resid	7.96E+08	Schwarz crite	rion	14.24157
Log likelihood	-63308.94	Hannan-Quin	n criter.	14.24052
F-statistic	0.045785	Durbin-Watso	on stat	1.953333
Prob(F-statistic)	0.830571			

$IS = C + B_1(MPT) + \varepsilon$

Note: Here, MPT= Mid Phase Time (from 12:00 pm to 14:00 pm);

Table 4.06.02.02: Effect of Mid Phase Time (MPT) trading on IS

Dependent Variable: IS Method<u>: Least</u> Squares Date: 03/16/17 Time: 20:57 Sample: 1 8892 Included observations: 8892

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C MPT	11.02973 -3.458226	3.809598 6.880435	2.895248 -0.502617	0.0038 0.6152
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000028 -0.000084 299.1444 7.96E+08 -63308.84 0.252624 0.615246	Mean depend S.D. depende Akaike info ci Schwarz crite Hannan-Quin Durbin-Watso	ent var riterion erion In criter.	9.969549 299.1318 14.23995 14.24155 14.24050 1.953321

Sources: Own calculation

 $\mathbf{IS} = \mathbf{C} + \mathbf{B}_1(\mathbf{LPT}) + \varepsilon$

Note: Here, LPT= Last Phase Time (from 14:00 am to 16:00 pm)

Table 4.06.02.03: Effect of Last Phase Timing (LPT) trading on IS

Dependent Variable: IS Method <u>: Least</u> Squares Date: 03/16/17 Time: 20 Sample: 1 8892 Included observations: 8				
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C LPT	8.299865 4.519583	3.994940 6.572676	2.077595 0.687632	0.0378 0.4917
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000053 -0.000059 299.1407 7.96E+08 -63308.73 0.472838 0.491702	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quinr Durbin-Watso	nt var terion rion n criter.	9.969549 299.1318 14.23993 14.24153 14.24047 1.953243

Interpretation: To identify the impact of time of transaction on Implementation shortfall total transaction hour is divide into three parts i.e., from 09:30 am to before 12:00 pm is the First Phase Time (FPT), from 12:00 pm to before 14:00 pm is the Mid Phase Time (MPT) and from 14:00 pm to16:00 pm is the Last Phase Time (LPT). By observing p values from table **4.06.02.01** to **4.06.02.03**, it can be concluded that execution time has no association with Implementation shortfall. It is observed that the trading implementation shortfall decreases in FPT and MPT getting negative relation whereas LPT shows positive relation.

Association between IS with five days' Time slot: IS

 $= C + B_1(MONFPT) + \varepsilon$

Note: Here, MONFPT= Monday First Phase Time

Table 4.06.03.01: Effect of Monday First Phase Time (MONFPT) trading on IS

Dependent Variable: IS Method<u>: Least</u> Squares Date: 03/16/17 Time: 20:59 Sample: 1 8892 Included observations: 8892

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C MONFPT	10.46393 -8.357529	3.270534 13.44700	3.199457 -0.621516	0.0014 0.5343
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000043 -0.000069 299.1421 7.96E+08 -63308.77 0.386282 0.534276	Mean depend S.D. depende Akaike info ci Schwarz crite Hannan-Quir Durbin-Watso	ent var riterion erion an criter.	9.969549 299.1318 14.23994 14.24154 14.24048 1.953407

$IS = C + B_1(MONMPT) + \varepsilon$

Table 4.06.03.02: Effect of Monday Mid Phase Time (MONMPT) trading on IS

Dependent Variable: IS Method<u>: Least</u> Squares Date: 03/16/17 Time: 20:59 Sample: 1 8892 Included observations: 8892

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C MONMPT	10.12253 -2.764790	3.263972 13.87598	3.101291 -0.199250	0.0019 0.8421
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000004 -0.000108 299.1480 7.96E+08 -63308.95 0.039701 0.842072	Mean depend S.D. depende Akaike info ci Schwarz crite Hannan-Quir Durbin-Watso	ent var riterion erion an criter.	9.969549 299.1318 14.23998 14.24157 14.24052 1.953358

Sources: Own calculation

$IS = C + B_1(MONLPT) + \varepsilon$

Table 4.06.03.03: Effect of Monday Last Phase Time (MONLPT) trading on IS

Dependent Variable: IS Method<u>: Least</u> Squares Date: 03/16/17 Time: 21:00 Sample: 1 8892 Included observations: 8892

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C MONLPT	10.40601 -6.468319	3.285118 12.64664	3.167620 -0.511465	0.0015 0.6090
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000029 -0.000083 299.1442 7.96E+08 -63308.83 0.261597 0.609038	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion n criter.	9.969549 299.1318 14.23995 14.24155 14.24050 1.953414

Sources: Own calculation

$IS = C + B_1(TUEFPT) + \varepsilon$

Table 4.06.03.04: Effect of Tuesday First Phase Time (TUEFPT) trading on IS

Method <u>: Least</u> Squares Date: 03/16/17 Time: 21 Sample: 1 8892 Included observations: 8				
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C TUEFPT	10.95732 -14.18942	3.288697 12.46460	3.331811 -1.138378	0.0009 0.2550
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000146 0.000033 299.1268 7.95E+08 -63308.32 1.295904 0.254993	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var riterion erion n criter.	9.969549 299.1318 14.23984 14.24143 14.24038 1.953656

Sources: Own calculation

Dependent Variable: IS

$IS = C + B_1(TUEMPT) + \varepsilon$

Table 4.06.03.05: Effect of Tuesday Mid Phase Time (TUEMPT) trading on IS

Dependent Variable: IS Method: Least Squares Date: 03/16/17 Time: 21:01 Sample: 1 8892 Included observations: 8892 Variable Coefficient Std. Error t-Statistic Prob. С 9.768150 3.276081 2.981657 0.0029 TUEMPT 3.232562 13.12500 0.246290 0.8055 R-squared 0.000007 Mean dependent var 9.969549 Adjusted R-squared -0.000106 S.D. dependent var 299.1318 S.E. of regression 299.1476 Akaike info criterion 14.23998 Sum squared resid 7.96E+08 Schwarz criterion 14.24157 Log likelihood Hannan-Quinn criter. -63308.93 14.24052 F-statistic 0.060659 Durbin-Watson stat 1.953379

0.805463

Sources: Own calculation

Prob(F-statistic)

$IS = C + B_1(TUELPT) + \varepsilon$

Table 4.06.03.06: Effect of Tuesday Last Phase Time (TUELPT) trading on IS

Dependent Variable: IS Method<u>: Least</u> Squares Date: 03/16/17 Time: 21:07 Sample: 1 8892 Included observations: 8892

Variable	Coefficient	Std. Error	t-Statistic	Prob.	
C TUELPT	6.619966 43.04117	3.301089 11.83325	2.005389 3.637309	0.0450 0.0003	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.001486 0.001374 298.9263 7.94E+08 -63302.35 13.23002 0.000277	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	nt var terion rion n criter.	9.969549 299.1318 14.23850 14.24009 14.23904 1.955327	

Sources: Own calculation

$IS = C + B_1(WEDFPT) + \varepsilon$

Table 4.06.03.07: Effect of Wednesday First Phase Time (WEDFPT) trading on IS

Dependent Variable: IS Method<u>: Least</u> Squares Date: 03/16/17 Time: 21:09 Sample: 1 8892 Included observations: 8892

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C WEDFPT	8.790021 15.20052	3.302836 11.85666	2.661356 1.282024	0.0078 0.1999
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000185 0.000072 299.1210 7.95E+08 -63308.14 1.643586 0.199868	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quinr Durbin-Watso	nt var terion rion n criter.	9.969549 299.1318 14.23980 14.24139 14.24034 1.953968

$IS = C + B_1(WEDMPT) + \varepsilon$

Table 4.06.03.08: Effect of Wednesday Mid Phase Time (WEDMPT) trading on IS

Dependent Variable: IS Method <u>: Least</u> Squares Date: 03/16/17 Time: 21 Sample: 1 8892 Included observations: 8				
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	10.06658	3.294115	3.055928	0.0023
WEDMPT	-1.337639	12.23091	-0.109365	0.9129
R-squared	0.000001	Mean depend	lent var	9.969549
Adjusted R-squared	-0.000111	S.D. depende	ent var	299.1318
S.E. of regression	299.1484	Akaike info cr	iterion	14.23998
Sum squared resid	7.96E+08	Schwarz crite	rion	14.24158
Log likelihood	-63308.96	Hannan-Quin	n criter.	14.24052
F-statistic	0.011961	Durbin-Watso	on stat	1.953349
Prob(F-statistic)	0.912915			

Sources: Own calculation

$IS = C + B_1(WEDLPT) + \varepsilon$

Table 4.06.03.09: Effect of Wednesday Last Phase Time (WEDLPT) trading on IS

Dependent Variable: IS Method<u>: Least</u> Squares Date: 03/16/17 Time: 21:12 Sample: 1 8892 Included observations: 8892

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C WEDLPT	9.960337 0.108489	3.316308 11.38102	3.003441 0.009532	0.0027 0.9924
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000000 -0.000112 299.1486 7.96E+08 -63308.97 9.09E-05 0.992395	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watsc	nt var iterion rion n criter.	9.969549 299.1318 14.23998 14.24158 14.24053 1.953354

$IS = C + B_1(THUFPT) + \varepsilon$

Table 4.06.03.10: Effect of Thursday First Phase Time (THUFPT) trading on IS

Dependent Variable: IS Method<u>: Least</u> Squares Date: 03/16/17 Time: 21:13 Sample: 1 8892 Included observations: 8892

	0002			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C THUFPT	9.726756 4.120069	3.270197 13.47125	2.974364 0.305842	0.0029 0.7597
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000011 -0.000102 299.1471 7.96E+08 -63308.92 0.093539 0.759732	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watsc	ent var iterion rion n criter.	9.969549 299.1318 14.23997 14.24157 14.24052 1.953397

Sources: Own calculation

$IS = C + B_1(THUMPT) + \epsilon$

Table 4.06.03.11: Effect of Thursday Mid Phase Time (THUMPT) trading on IS

Dependent Variable: IS Method<u>: Least</u> Squares Date: 03/16/17 Time: 21:14 Sample: 1 8892 Included observations: 8892

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C THUMPT	10.41641 -8.312681	3.261199 14.06575	3.194042 -0.590987	0.0014 0.5545
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000039 -0.000073 299.1428 7.96E+08 -63308.79 0.349266 0.554544	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	nt var iterion rion n criter.	9.969549 299.1318 14.23994 14.24154 14.24049 1.953343

Sources: Own calculation

$IS = C + B_1(THULPT) + \varepsilon$

Table 4.06.03.12: Effect of Thursday Last Phase Time (THULPT) trading on IS

Dependent Variable: IS Method <u>: Least</u> Squares Date: 03/16/17 Time: 21: Sample: 1 8892 Included observations: 88				
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	9.514372	3.290478	2.891486	0.0038
THULPT	6.455228	12.39153	0.520939	0.6024
R-squared	0.000031	Mean depend		9.969549
Adjusted R-squared	-0.000082	S.D. depender		299.1318
S.E. of regression	299.1441	Akaike info cri	terion	14.23995
Sum squared resid	7.96E+08	Schwarz criter	ion	14.24155
Log likelihood	-63308.83	Hannan-Quinr	n criter.	14.24050
F-statistic	0.271377	Durbin-Watso	n stat	1.953325
Prob(F-statistic)	0.602422			

Sources: Own calculation

$IS = C + B_1(FRIFPT) + \varepsilon$

Table 4.06.03.13: Effect of Friday First Phase Time (FRIFPT) trading on IS

Dependent Variable: IS Method: Least Squares Date: 03/16/17 Time: 21:15 Sample: 1 8892 Included observations: 8892 Variable Coefficient Std. Error t-Statistic Prob. С 10.23516 3.269803 3.130208 0.0018 FRIFPT -4.524594 13.49541 -0.335269 0.7374 0.000013 9.969549 R-squared Mean dependent var Adjusted R-squared -0.000100 S.D. dependent var 299.1318 S.E. of regression 299.1468 Akaike info criterion 14.23997 Sum squared resid 7.96E+08 Schwarz criterion 14.24157 Log likelihood -63308.91 Hannan-Quinn criter. 14.24051 F-statistic 0.112405 Durbin-Watson stat 1.953393 Prob(F-statistic) 0.737430

$IS = C + B_1(FRIMPT) + \varepsilon$

Table 4.06.03.14: Effect of Friday Mid Phase Time (FRIMPT) trading on IS

. Method: Least Squares Date: 03/16/17 Time: 21:15 Sample: 1 8892 Included observations: 8892 Variable Coefficient Std. Error t-Statistic Prob. С 10.25404 3.276659 3.129420 0.0018 FRIMPT -4.541707 13.09192 -0.346909 0.7287 R-squared 0.000014 Mean dependent var 9.969549 S.D. dependent var Adjusted R-squared -0.000099 299.1318 S.E. of regression 299.1466 Akaike info criterion 14.23997 Sum squared resid 7.96E+08 Schwarz criterion 14.24156 Log likelihood -63308.90 Hannan-Quinn criter. 14.24051 F-statistic 0.120346 Durbin-Watson stat 1.953361 Prob(F-statistic) 0.728668

Sources: Own calculation

Dependent Variable: IS

$IS = C + B_1(FRILPT) + \varepsilon$

Table 4.06.03.15: Effect of Friday Last Phase Time (FRILPT) trading on IS

Dependent Variable: IS Method<u>: Least</u> Squares Date: 03/16/17 Time: 21:16 Sample: 1 8892 Included observations: 8892

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C FRILPT	12.18215 -32.20038	3.286129 12.53614	3.707143 -2.568605	0.0002 0.0102
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000742 0.000629 299.0377 7.95E+08 -63305.67 6.597732 0.010227	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watsc	ent var iterion rion n criter.	9.969549 299.1318 14.23924 14.24084 14.23978 1.955065

Interpretation: From table **4.06.03.01** to **4.06.03.15** our target is to find out whether any period of a certain day has an association with implementation shortfall. By running a regression analysis, it is found that TUEMPT (first session of Tuesday) and FRILPT (last session of the Friday) have substantial association with the transaction cost. Both are significant at 5%. But the nature of coefficient is different. If one transact in TUESLPT implementation short fall will be increased whereas involving a transaction in FRILPT may reduce the implementation shortfall. In case of the rest of the period of the remaining days, there is not enough evidence to reject the null hypothesis meaning that they have no association with implementation shortfall.

Association between Total Execution Costs with 5 Transaction Days:

Total Execution Cost = $C + B_1(MON) + \varepsilon$

 Table 4.06.04.01: Effect of Monday trading on Total Execution Costs

Dependent Variable: COST_EXECUTION_TOTAL Method: Least Squares Date: 03/18/17 Time: 18:58 Sample: 1 8892 Included observations: 8892

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C MON	29026.01 -4624.373	2391.316 5605.926	12.13809 -0.824908	0.0000 0.4094
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000077 -0.000036 203949.9 3.70E+14 -121326.5 0.680473 0.409446	Mean depend S.D. depende Akaike info ci Schwarz crite Hannan-Quin Durbin-Watso	ent var riterion erion n criter.	28184.56 203946.3 27.28936 27.29096 27.28990 1.870896

Total Execution Cost = $C + B_1(TUE) + \epsilon$

Table 4.06.04.02: Effect of Tuesday trading on Total Execution Costs

Dependent Variable: COST_EXECUTION_TOTAL Method<u>: Least</u> Squares Date: 03/18/17 Time: 18:58 Sample: 1 8892 Included observations: 8892

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C TUE	25993.99 10444.26	2432.544 5311.548	10.68593 1.966330	0.0000 0.0493
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000435 0.000322 203913.4 3.70E+14 -121324.9 3.866455 0.049292	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watsc	ent var riterion rion n criter.	28184.56 203946.3 27.28900 27.29060 27.28955 1.871274

Sources: Own calculation

Total Execution Cost = $C + B_1(WED) + \varepsilon$

Table 4.06.04.03: Effect of Wednesday trading on Total Execution Costs

Dependent Variable: COST_EXECUTION_TOTAL Method<u>: Least</u> Squares Date: 03/18/17 Time: 18:59 Sample: 1 8892 Included observations: 8892

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C WED	26904.50 5446.037	2472.829 5100.592	10.88005 1.067726	0.0000 0.2857
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000128 0.000016 203944.7 3.70E+14 -121326.3 1.140040 0.285673	Mean depende S.D. depende Akaike info cri Schwarz criter Hannan-Quinr Durbin-Watso	nt var terion rion n criter.	28184.56 203946.3 27.28931 27.29091 27.28985 1.871227

Total Execution Cost = $C + B_1(THU) + \epsilon$

Table 4.06.04.04: Effect of Thursday trading on Total Execution Costs

Dependent Variable: COST_EXECUTION_TOTAL Method: Least Squares Date: 03/18/17 Time: 19:00 Sample: 1 8892 Included observations: 8892

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C THU	29418.50 -6735.556	2393.022 5590.954	12.29345 -1.204724	0.0000 0.2283
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000163 0.000051 203941.1 3.70E+14 -121326.1 1.451360 0.228342	Mean depend S.D. depende Akaike info ci Schwarz crite Hannan-Quin Durbin-Watso	ent var riterion rion n criter.	28184.56 203946.3 27.28927 27.29087 27.28982 1.871153

Sources: Own calculation

Total Execution Cost = $C + B_1(FRI) + \varepsilon$

Table 4.06.04.05: Effect of Friday trading on Total Execution Costs

Dependent Variable: COST_EXECUTION_TOTAL Method<u>: Least</u> Squares Date: 03/18/17 Time: 19:00 Sample: 1 8892 Included observations: 8892

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C FRI	29436.59 -6587.628	2403.138 5512.329	12.24923 -1.195072	0.0000 0.2321
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000161 0.000048 203941.3 3.70E+14 -121326.1 1.428196 0.232091	Mean depend S.D. depende Akaike info c Schwarz crite Hannan-Quir Durbin-Watse	ent var riterion erion an criter.	28184.56 203946.3 27.28928 27.29087 27.28982 1.871134

Interpretation: Above tables 4.06.04.01, 4.06.04.02, 4.06.04.03, 4.06.04.04 and

4.06.04.05 are calculated to determine the association ship between days and total execution costs. Durbin-Watson model proves the residuals are not serially correlated. Observing p values of five models only one model (Tuesday) is significant and the null hypothesis cannot be accepted. This indicates Tuesday has an association with total execution cost. The relation is positive and if anyone wants to buy he/she has to spend more for total execution costs will be enhanced. Except Tuesday rest four days have no association with total execution cost as there is not enough evidence to reject the null hypothesis.

Association between Total Execution Costs with Three Time slots:

Total Execution Cost = $C + B_1(FPT) + \varepsilon$

.....

Table 4.06.05.01: Effect of FPT trading on Total Execution Costs

Dependent Variable: CO Method <u>: Least</u> Squares Date: 03/18/17 Time: 19 Sample: 1 8892 Included observations: 8	:02	ON_TOTAL		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C FPT	30662.06 -7646.633	2630.268 4620.915	11.65739 -1.654787	0.0000 0.0980
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000308 0.000195 203926.3 3.70E+14 -121325.5 2.738322 0.098003	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watsc	ent var iterion rion n criter.	28184.56 203946.3 27.28913 27.29073 27.28967 1.870938

Total Execution Cost = $C + B_1(MPT) + \epsilon$

Table 4.06.05.02: Effect of MPT trading on Total Execution Costs

Dependent Variable: COST_EXECUTION_TOTAL Method: Least Squares Date: 03/18/17 Time: 19:02 Sample: 1 8892 Included observations: 8892

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C MPT	29317.91 -3696.927	2597.307 4690.942	11.28781 -0.788099	0.0000 0.4307
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000070 -0.000043 203950.6 3.70E+14 -121326.5 0.621100 0.430660	Mean depend S.D. depende Akaike info ci Schwarz crite Hannan-Quin Durbin-Watso	ent var riterion erion in criter.	28184.56 203946.3 27.28937 27.29096 27.28991 1.870941

Sources: Own calculation

Total Execution Cost = $C + B_1(LPT) + \epsilon$

Table 4.06.05.03: Effect of LPT trading on Total Execution Costs

Dependent Variable: COST_EXECUTION_TOTAL Method<u>: Least</u> Squares Date: 03/18/17 Time: 19:03 Sample: 1 8892 Included observations: 8892

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C LPT	24282.19 10563.11	2722.947 4479.929	8.917616 2.357874	0.0000 0.0184
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000625 0.000513 203894.0 3.70E+14 -121324.1 5.559572 0.018401	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watsc	nt var iterion rion n criter.	28184.56 203946.3 27.28881 27.29041 27.28936 1.871391

Interpretation: To justify whether different time slot of a day has any impact on total execution cost or not the three regression (table **4.06.05.01**, **4.06.05.02** and **4.06.05.03**) was conducted. It is found that FPT and LPT has an association with total cost execution. The relation is also significant as both are statistically proved at 10% and 5% respectively. Beta coefficient negative for FPT which indicates that if one trade at first session (from 09:30 am to before 12:00 pm) s/he has to pay less execution cost. But the scenario is reverse for LPT. So, it is not worthy to trade at the last session of the day.

Association between Total Execution Costs with Five Days' Time slots:

Total Execution Cost = $C + B_1(MONFPT) + \varepsilon$

Table 4.06.06.01: Effect of MONFPT trading on Total Execution Costs

Dependent Variable: COST_EXECUTION_TOTAL Method<u>: Least</u> Squares Date: 03/18/17 Time: 19:04 Sample: 1 8892 Included observations: 8892

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C MONFPT	29064.33 -14872.54	2229.549 9166.928	13.03597 -1.622413	0.0000 0.1048
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000296 0.000184 203927.5 3.70E+14 -121325.5 2.632223 0.104750	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	nt var iterion rion n criter.	28184.56 203946.3 27.28914 27.29074 27.28969 1.871413

Total Execution Cost = $C + B_1(MONMPT) + \varepsilon$

Table 4.06.06.02: Effect of MONMPT trading on Total Execution Costs

Dependent Variable: COST_EXECUTION_TOTAL Method: Least Squares Date: 03/18/17 Time: 19:04 Sample: 1 8892 Included observations: 8892

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C MONMPT	28681.14 -8974.865	2225.249 9460.100	12.88896 -0.948707	0.0000 0.3428
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000101 -0.000011 203947.4 3.70E+14 -121326.4 0.900045 0.342795	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watsc	ent var riterion rion n criter.	28184.56 203946.3 27.28934 27.29093 27.28988 1.870881

Sources: Own calculation

Total Execution Cost = $C + B_1(MONLPT) + \varepsilon$

Table 4.06.06.03: Effect of MONLPT trading on Total Execution Costs

Dependent Variable: COST_EXECUTION_TOTAL Method<u>: Least</u> Squares Date: 03/18/17 Time: 19:05 Sample: 1 8892 Included observations: 8892

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C MONLPT	27532.03 9670.443	2239.648 8621.918	12.29302 1.121612	0.0000 0.2621
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000141 0.000029 203943.3 3.70E+14 -121326.2 1.258012 0.262058	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	nt var iterion rion n criter.	28184.56 203946.3 27.28930 27.29089 27.28984 1.871071

Total Execution Cost = $C + B_1(TUEFPT) + \epsilon$

Table 4.06.06.04: Effect of TUEFPT trading on Total Execution Costs

Dependent Variable: COST_EXECUTION_TOTAL Method<u>: Least</u> Squares Date: 03/18/17 Time: 19:06 Sample: 1 8892 Included observations: 8892

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C TUEFPT	28238.34 -772.5985	2242.376 8498.903	12.59304 -0.090906	0.0000 0.9276
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000001 -0.000112 203957.6 3.70E+14 -121326.8 0.008264 0.927570	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	nt var iterion rion n criter.	28184.56 203946.3 27.28944 27.29103 27.28998 1.870803

Sources: Own calculation

Total Execution Cost = $C + B_1(TUEMPT) + \varepsilon$

Table 4.06.06.05: Effect of TUEMPT trading on Total Execution Costs

Dependent Variable: COST_EXECUTION_TOTAL Method<u>: Least</u> Squares Date: 03/18/17 Time: 19:06 Sample: 1 8892 Included observations: 8892

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C TUEMPT	28126.19 936.7778	2233.618 8948.573	12.59221 0.104685	0.0000 0.9166
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000001 -0.000111 203957.6 3.70E+14 -121326.8 0.010959 0.916628	Mean depende S.D. depende Akaike info cri Schwarz criter Hannan-Quinr Durbin-Watsor	nt var terion rion n criter.	28184.56 203946.3 27.28944 27.29103 27.28998 1.870799

Total Execution Cost = $C + B_1(TUELPT) + \varepsilon$

Table 4.06.06.06: Effect of TUELPT trading on Total Execution Costs

Dependent Variable: COST_EXECUTION_TOTAL Method<u>: Least</u> Squares Date: 03/18/17 Time: 19:07 Sample: 1 8892 Included observations: 8892

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C TUELPT	26312.43 24056.28	2251.211 8069.804	11.68812 2.981024	0.0000 0.0029
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000999 0.000886 203855.9 3.69E+14 -121322.4 8.886505 0.002881	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	nt var iterion rion n criter.	28184.56 203946.3 27.28844 27.29003 27.28898 1.872075

Sources: Own calculation

Total Execution Cost = $C + B_1(WEDFPT) + \varepsilon$

Table 4.06.06.07: Effect of WEDFPT trading on Total Execution Costs

Dependent Variable: COST_EXECUTION_TOTAL Method: Least Squares Date: 03/18/17 Time: 19:08 Sample: 1 8892 Included observations: 8892 t-Statistic Variable Coefficient Std. Error Prob. С 28446.19 2252.040 12.63130 0.0000 -0.417052 WEDFPT -3371.641 8084.464 0.6767 R-squared 0.000020 Mean dependent var 28184.56 Adjusted R-squared -0.000093 S.D. dependent var 203946.3 S.E. of regression 203955.7 27.28942 Akaike info criterion Sum squared resid 3.70E+14 Schwarz criterion 27.29101 Log likelihood -121326.8 Hannan-Quinn criter. 27.28996 F-statistic 0.173932 **Durbin-Watson stat** 1.870768 Prob(F-statistic) 0.676650

Total Execution Cost = $C + B_1(WEDMPT) + \epsilon$

Table 4.06.06.08: Effect of WEDMPT trading on Total Execution Costs

Dependent Variable: COST_EXECUTION_TOTAL Method: Least Squares Date: 03/18/17 Time: 19:09 Sample: 1 8892 Included observations: 8892

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C WEDMPT	28264.20 -1097.970	2245.907 8338.955	12.58476 -0.131668	0.0000 0.8953
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000002 -0.000111 203957.5 3.70E+14 -121326.8 0.017336 0.895250	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watsc	ent var iterion rion n criter.	28184.56 203946.3 27.28944 27.29103 27.28998 1.870785

Sources: Own calculation

Total Execution Cost = $C + B_1(WEDLPT) + \epsilon$

Table 4.06.06.09: Effect of WEDLPT trading on Total Execution Costs

Dependent Variable: COST_EXECUTION_TOTAL Method<u>: Least</u> Squares Date: 03/18/17 Time: 19:09 Sample: 1 8892 Included observations: 8892

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C WEDLPT	26770.07 16659.03	2260.453 7757.497	11.84279 2.147475	0.0000 0.0318
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000518 0.000406 203904.8 3.70E+14 -121324.5 4.611650 0.031782	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	nt var iterion rion n criter.	28184.56 203946.3 27.28892 27.29051 27.28946 1.871761

Total Execution Cost = $C + B_1(THUFPT) + \epsilon$

Table 4.06.06.10: Effect of THUFPT trading on Total Execution Costs

Dependent Variable: COST_EXECUTION_TOTAL Method<u>: Least</u> Squares Date: 03/18/17 Time: 19:10 Sample: 1 8892 Included observations: 8892

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C THUFPT	28175.01 162.0737	2229.612 9184.667	12.63673 0.017646	0.0000 0.9859
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000000 -0.000112 203957.7 3.70E+14 -121326.8 0.000311 0.985922	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quinr Durbin-Watso	nt var terion rion n criter.	28184.56 203946.3 27.28944 27.29103 27.28998 1.870802

Sources: Own calculation

Total Execution Cost = $C + B_1(THUMPT) + \varepsilon$

Table 4.06.06.11: Effect of THUMPT trading on Total Execution Costs

Dependent Variable: COST_EXECUTION_TOTAL Method<u>: Least</u> Squares Date: 03/18/17 Time: 19:11 Sample: 1 8892 Included observations: 8892

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C THUMPT	28765.13 -10800.10	2223.350 9589.450	12.93774 -1.126248	0.0000 0.2601
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000143 0.000030 203943.2 3.70E+14 -121326.2 1.268435 0.260091	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watsc	ent var iterion erion n criter.	28184.56 203946.3 27.28930 27.29089 27.28984 1.871055

Total Execution Cost = $C + B_1(THULPT) + \epsilon$

Table 4.06.06.12: Effect of THULPT trading on Total Execution Costs

Dependent Variable: COST_EXECUTION_TOTAL Method: Least Squares Date: 03/18/17 Time: 19:11 Sample: 1 8892 Included observations: 8892

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C THULPT	28687.53 -7133.145	2243.372 8448.260	12.78768 -0.844333	0.0000 0.3985
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000080 -0.000032 203949.6 3.70E+14 -121326.5 0.712898 0.398506	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watsc	nt var iterion rion n criter.	28184.56 203946.3 27.28936 27.29095 27.28990 1.871133

Sources: Own calculation

Total Execution Cost = $C + B_1(FRIFPT) + \varepsilon$

Table 4.06.06.13: Effect of FRIFPT trading on Total Execution Costs

Dependent Variable: COST_EXECUTION_TOTAL Method<u>: Least</u> Squares Date: 03/18/17 Time: 19:12 Sample: 1 8892 Included observations: 8892

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C FRIFPT	28784.45 -10218.94	2229.191 9200.507	12.91251 -1.110693	0.0000 0.2667
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000139 0.000026 203943.6 3.70E+14 -121326.2 1.233639 0.266731	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		28184.56 203946.3 27.28930 27.29089 27.28984 1.870755

Total Execution Cost = $C + B_1(FRIMPT) + \epsilon$

Table 4.06.06.14: Effect of FRIMPT trading on Total Execution Costs

Dependent Variable: COST_EXECUTION_TOTAL Method: Least Squares Date: 03/18/17 Time: 19:12 Sample: 1 8892 Included observations: 8892

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C FRIMPT	27916.03 4286.728	2233.993 8925.938	12.49603 0.480255	0.0000 0.6311
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000026 -0.000087 203955.1 3.70E+14 -121326.7 0.230645 0.631058	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watsc	nt var iterion rion n criter.	28184.56 203946.3 27.28941 27.29101 27.28996 1.870723

Sources: Own calculation

Total Execution Cost = $C + B_1(FRILPT) + \varepsilon$

Table 4.06.06.15: Effect of FRILPT trading on Total Execution Costs

Dependent Variable: COST_EXECUTION_TOTAL Method<u>: Least</u> Squares Date: 03/18/17 Time: 19:13 Sample: 1 8892 Included observations: 8892

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C FRILPT	28937.38 -10956.02	2241.087 8549.442	12.91221 -1.281490	0.0000 0.2001
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000185 0.000072 203938.9 3.70E+14 -121326.0 1.642215 0.200055	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		28184.56 203946.3 27.28925 27.29085 27.28980 1.871225

Interpretation: From table **4.06.06.01** to **4.06.06.15**, observing the p value (.002881 and 0.031782) in table **4.06.06.06** and **4.06.06.09** it is found that last session of the Tuesday or last session of Wednesday has great impact on total execution cost. Beta coefficient of TUELPT and WEDLPT shows they have positive relation meaning that if one wants to trade at the last session of both Tuesday and Wednesday total cost will be higher than that of other time slot in other days. Durbin-Watson model also justifies that data is free from serial correlation.

Note: Here, IS= Implementation Shortfall; MON= Monday; TUE= Tuesday; WED=Wednesday; THU= Thursday; FRI= Friday; FPT= First Phase Time (from 09:30 am to 12:00 pm); MPT= Mid Phase Time (from 12:00 pm to 14:00 pm); LPT= Last Phase Time (from 14:00 am to 16:00 pm).

Conclusion:

In this study, at first, the effective days for transactions are revealed. Here effectiveness is measured based on the less implementation shortfall and high returns from transactions. This study reveals that there is a significant association between implementation shortfall and several trading days. The result shows that Friday and Monday are significantly affecting negatively on the transaction cost. It implies that if anybody wants to acquire more profit/less transaction cost it is better to trade on Fridays and Mondays. However, since the coefficient for Monday is not significant, it is difficult to argue in its favor as opposed to Fridays. Ergo, transaction cost. The other days, though

get positive relationship with transaction cost, only Tuesday's coefficient is significant and it means that transaction on Tuesday may impact adversely on transaction cost. Wednesday and Thursday also may cause more transaction cost but the coefficients are not significant.

After finding out the effective day, the target was to determine the best hours to transact with less transaction cost. So, all days are divided into three time slots namely; FPT (First Phase Time), MPT (Mid Phase Time), LPT (Last Phase Time) to find out the best time slot to transact. Though it is found that transaction on Friday to be important to reduce transaction cost but not all time slots of Fridays turn out be significant, only last slot LPT (from 14:00 to 16:00) is significant to reduce the transaction cost. It clearly implies that the best time to execute the stock transaction on Friday is LPT. It is observed in other trading days that it is better not to trade in the last session of Tuesday because it has positive relation with transaction cost. On Monday, Thursday and Friday total execution costs are little and has negative relationship with transaction cost. So, it can be concluded that transaction at eleventh hour on Friday is highly desirable as it gives the lowest transaction cost and possibly improves return as a result. This finding is consistent with the literature on days-of-the-week effect that support the hypothesis that trading return on Fridays are higher than other trading days.