

Declaration

I, Abhijit Nath bearing Registration No. Ph.D./724/2009 dated 11/02/2009, hereby declare that the subject matter of the thesis entitled "*Studies on Synthesis, Characterisation and Properties of some Metal based and Carbon Nanomaterials*" is the record of work done by me and that the contents of this thesis did not form the basis for award of any degree to me or to anybody else to the best of my knowledge. The thesis has not been submitted in any other University/ Institute.

The thesis is being submitted to Assam University for the degree of Doctor of Philosophy in Chemistry.

Abhijit Noth

Place: Silchar

Date: 08/02/2016

Abhijit Nath Ph. D. Scholar Department of Chemistry Assam University, Silchar

Acknowledgments

It gives me immense pleasure to acknowledge my indebtness and express deepest sense of gratitude to my Mentor and Supervisor Prof. C. R. Bhattacharjee, for introducing me in the field of research and his invaluable motivation, help and guidance in each and every step of this research work.

It gives me immense pleasure to acknowledge my indebtness to Co-supervisor, Dr. Madhuri Sharon, Director, Walchand Centre of Research in Nanotechnology & Bio-Nanotechnology, Maharashtra for her invaluable help and guidance in each step of this research work.

I would also like to pay my sincere thankfulness to Prof. P. C. Paul, Head, Dept of Chemistry for constant encouragement.

I would like to express my deep sense of respect and admiration to Prof. S.B. Paul Dept of Chemistry, Assam University, Silchar for his continuous encouragement and unstinted support that always been the driving forces for me.

I would like to thank Prof. M.R. Islam, Prof. N.V.S. Rao, Dr. P. Mondal, Dr. M.K. Paul, Dr. Sk. Jasimuddin, Dr. D. Sengupta, Dr. H. Acharya, Dr. S. Ghosh and Dr. T.S. Singh for their help and encouragement during the Ph.D. research tenure.

I would like to express my heartfelt gratefulness to Prof Jayashree Rout of Dept. of Ecology and Environmental Science, one of our active collaborators, for her constant encouragement and fruitful association.

I would like to express my deep sense of respect to Prof. Maheswar Sharon, IIT Mumbai, for introducing me with CVD technique and encouraging for the synthesis of CNM from natural product of NER India.

Analytical and instrumental facilities provided by SAIF, NEHU, Shillong; CIF, IIT Guwahati, USIC, Gauhati University, Manipur University gratefully acknowledged. I would like to mention the names of Dept. of Chemistry and Biotech Hub, S. S. College, Dept. of Chemistry and Biotech Hub, GC College, Periyer Pharmaceutical College, Bangalore for deriving benefits from the labs. I am thankful to Prof. B.S. Purkayastha, Dean Albert Einstein School of Physical Sciences, for his continuous support during my research work.

I would like to acknowledge the help extended by Mr. Soumen Paul Choudhury, Dr. Pinak Pani Nath Choudhury, Mr. Arabinda Kherkatary, Dr. Debraj Dhar Purkayastha, Dr. Sudip Choudhury and Dr. Ashish Nath.

I would like to profusely thank to Aziz, Dipyaman, Ashim, Bimal, Badruzzaman, Pinak,, Chitrajit, Abul, Soumitra, Suranjan Sir, Taj Uddin Khan, Kalitada, Surajitda, Biswajit, Sujit Tiwary, Karmakar Sir, Mukherjee sir, Souvonik Deb, Aparajita Das, Ayan Chakraborty and all my Students and Colleagues.

I would like to profusely thank our group members Dr. Pankaj Goswami, Dr. Sankar Neogi, Dr. Gobinda Das, Dr. Chitraniva Datta, Bishop Dev Gupta, Rajat Goswami, Dr.Harun All Rashid Pramanik, Sutapa Chakraborty, Nirmalendu Das and Rupam Chakrabarty for their manifold help and unstinting support during my research. I would also like to thank all research scholars of NSNRC, Amabernath, Maharashtra for help and support.

I would like to express my thanks to Mr. P. Ramesh, Mr. S. Bhattacharjee, Mr. J.A. Barbhuiya, and Mr. L. Hmar for several help. I am also thankful to all my relatives, friends and classmates. I am grateful to God, for giving me the strength and opportunity to step in the field of higher studies.

Eventually, I found no words to express my feelings to my beloved parents, my elder brother, Biswajit Nath, Dept of Chemistry, AUS, my wife, my son, my two sisters, brother-in-laws, my two maternal uncles, Mr. P G Nath, Mr A. Nath and other family members for their love, affection, supreme self-less sacrifice, incessant persuasion attention, inspiration and constant blessings which brought me to this phase of life in the achievement of this pinnacle of success.

My special thanks go to all my well-wishers for encouraging me throughout.

Abhijit Noth

Abhijit Nath

Contents

Abstract			i-iii
Chapter	1	General Introduction	1
	1.1.	Nanomaterials: definition and importance	1
	1.1.1.	Nanomaterials in nature	2
	1.2	Classification of nanomaterials	3
	1.3	Approaches to synthesis of nanomaterials	4
	1.3.1	Mechanical grinding	5
	1.3.2	Wet chemical synthesis	5
	1.3.3	Electric arc discharge method	5
	1.3.4.	Laser ablation	6
	1.3.5.	Chemical vapor deposition (CVD) method	6
	1.4	Carbon nanomaterials	8
	1.5	Metal based nanomaterials	11
	1.6	Nanocomposite	11
	1.7	Scope and objective	12
		References	14
Chapter	2	Details of chemicals, materials and equipments	21
	2.1	Materials	21
	2.2	Details of Instruments	21
	2.2.1	UV-visible study	21
	2.2.2	FT-IR study	21
	2.2.3	Raman study	22
	2.2.4	Powder X-ray diffraction study	22
	2.2.5	Scanning electron microscopy	22
	2.2.6.	Transmission electron microscopy	22
			22
	2.2.7.	Energy dispersive X-ray study	22
	2.2.7. 2.2.8.	Energy dispersive X-ray study Tap density	22 22
	 2.2.7. 2.2.8. 2.2.9. 	Energy dispersive X-ray study Tap density Capacitance study	22 22 23
	 2.2.7. 2.2.8. 2.2.9. 2.2.10. 	Energy dispersive X-ray study Tap density Capacitance study Antioxidant activity	22 22 23 23
	 2.2.7. 2.2.8. 2.2.9. 2.2.10. 2.2.11. 	Energy dispersive X-ray study Tap density Capacitance study Antioxidant activity Antimicrobial activity	22 22 23 23 23 23
	 2.2.7. 2.2.8. 2.2.9. 2.2.10. 2.2.11. 2.2.12. 	Energy dispersive X-ray study Tap density Capacitance study Antioxidant activity Antimicrobial activity Photocatalytic activity	22 22 23 23 23 23 23

Chapter	3	Synthesis of Multiwalled Carbon Nanotubes	26
		(MWCNT) and related carbon nanostructures	
	3.1.	Introduction	26
	3.2.	Preparation of catalyst (iron, nickel and cobalt	28
		nanoparticles)	
	3.2.1.	Transmission electron microscopy of catalyst	28
	3.3.	Multiwalled carbon nanotubes (MWCNT) from	29
		turpentine oil	
	3.3.1.	Materials	29
	3.3.2.	Synthesis of MWCNT from turpentine oil	29
	3.3.3.	Results and discussion	30
	3.3.3.1.	Scanning electron microscopy of CNT	30
	3.3.3.2.	Transmission electron microscopy of MWCNT	31
	3.3.3.3.	X-ray diffraction study of MWCNT	32
	3.4.	Spiral multiwalled carbon nanotubes (MWCNT) and	34
		carbon nanowhiskers (CNW) from sesame oil	
	3.4.1.	Materials	34
	3.4.2.	Synthesis of spiral MWCNT and CNW from sesame	35
		oil	
	3.4.3.	Results and discussion	36
	3.4.3.1.	Transmission electron microscopy of spiral	36
		MWCNT	
	3.4.3.2.	Scanning electron microscopy and transmission	38
		electron microscopy of carbon nanowhiskers (CNW)	
	3.4.3.3.	Probable mechanism of growth of carbon	39
		nanowhiskers	
	3.4.3.4.	Powder X-ray diffraction study of MWCNT and	39
		CNW from sesame oil	
	3.4.3.5.	Antioxidant activity of MWCNT from sesame oil	41
	3.5.	Multiwalled carbon nanotubes (MWCNT) from	43
		soybean oil	
	3.5.1.	Materials	43
	3.5.2.	Synthesis of MWCNT from soybean oil	45

3.5.3.	Results and discussion	45
3.5.3.1.	Transmission electron microscopy of MWCNT from	45
	soybean oil without using catalyst	
3.5.3.2.	Scanning electron microscopy and transmission	47
	electron microscopy of MWCNT from soybean oil	
	using nickel catalyst	
3.5.3.3.	Powder X-ray diffraction study of MWCNT from	48
	soybean oil (catalyst free)	
3.6.	Multiwalled carbon nanotube (MWCNT) from	49
	sunflower oil	
3.6.1.	Materials	49
3.6.2.	Synthesis of MWCNT from sunflower oil	50
3.6.3.	Results and discussion	50
3.6.3.1.	Scanning electron microscopy and transmission	50
	electron microscopy	
3.6.3.2.	XRD analysis of MWCNT from sunflower oil	51
3.6.3.3.	Antioxidant activity of MWCNT from sunflower oil	52
3.7.	Multiwalled carbon nanotube from refined mustard	53
	oil	
3.7.1.	Materials	53
3.7.2.	Synthesis of MWCNT from refined mustard oil	54
3.7.3.	Results and discussion	54
3.7.3.1.	Scanning electron microscopy and transmission	55
	electron microscopy	
3.7.3.2.	X- ray diffraction analysis of MWCNT from refined	56
	mustard oil	
3.7.3.3.	Electrochemical behaviour of MWCNT from refined	56
	mustard oil	
3.7.3.3.1.	Cyclic Voltammetry	58
3.7.3.3.2.	Constant current or galvanostatic charge/	60
	discharge (CD)	
3.8.	Multi walled carbon nanotubes (MWCNT) from	61
	ghee (clarified butter from cow's milk)	

3.8.1.	Materials	61
3.8.2.	Synthesis of MWCNT	62
3.8.3.	Results and discussion	62
3.8.3.1.	Scanning electron microscopy and transmission	62
	electron microscopy	
3.8.3.2.	X-ray diffraction study of MWCNT from ghee	64
3.8.3.3.	Antioxidant activity of MWCNT from ghee	65
3.9.	Carbon nanowhiskers / nanonecklace and carbon	67
	nanorings from palmolein oil using nickel	
	nanoparticle as catalyst	
3.9.1.	Materials	67
3.9.2.	Synthesis of carbon nanowhiskers / nanonecklace	67
	and carbon nanorings	
3.9.3.	Results and discussion	68
3.9.3.1.	Scanning electron microscopy and transmission	68
	electron microscopy of carbon	
	nanowhisker/nanonecklace	
3.9.3.2.	Transmission electron microscopy of carbon	69
	nanorings from palmolein oil	
3.9.3.3.	XRD pattern of carbon nanowhiskers and carbon	70
	nanorings	
3.10.	Multiwalled carbon nanotubes (MWCNT) and	71
	nanowhiskers	
	(CNW) from D-fructose	
3.10.1.	Materials	71
3.10.2.	Synthesis of carbon MWCNTs and CNWs from D-	72
	fructose	
3.10.3.	Results and discussion	72
3.10.3.1.	Scanning electron microscopy and transmission	72
	electron microscopy of MWCNT	
3.10.3.2.	Scanning electron microscopy and transmission	73
	electron microscopy of CNW from D-fructose	
3.10.3.3.	XRD analysis and EDS analysis of MWCNT from	74

D-fructose

	3.10.3.4.	XRD analysis and EDS analysis of CNW from D-	75
		fructose	
	3.11.	Multiwalled carbon nanotubes (MWCNT) and	76
		carbon nanowhiskers (CNW) from 1-butanol	
	3.11.1.	Materials	76
	3.11.2.	Synthesis of CNW and MWCNT	77
	3.11.3.	Results and discussion	77
	3.11.3.1.	(a) Scanning electron microscopy and transmission	77
		electron microscopy of CNW from 1-butanol	
	3.11.3.1.	(b) Scanning electron microscopy and transmission	78
		electron microscopy of MWCNT from 1-butanol	
	3.11.3.2.	XRD analysis of CNW using nickel nanoparticles as	79
		catalyst	
	3.11.3.3	XRD analysis and EDS analysis of MWCNT using	80
		cobalt nanoparticles as catalyst from 1-butanol	
	3.12.	Multiwalled carbon nanotubes (MWCNT) from	82
		vinyl alcohol	
	3.12.1.	Materials	82
	3.12.2.	Synthesis of MWCNT	82
	3.12.3.	Results and discussion	82
	3.12.3.1.	Scanning electron microscopy and transmission	82
		electron microscopy of MWCNT	
	3.12.3.2.	X-ray diffraction study of MWCNT from vinyl	83
		alcohol	
		References	85
Chapter	4	Synthesis, antioxidant activity and	92
		electrochemical behavior of carbon	
		nanomaterials from plant seeds	
	4.1.	Introduction	92
	4.2.	Carbon nanospheres from seeds of a tropical plant,	93
		Delonix regia	
	4.2.1.	Materials	93

4.2.2.	Synthesis of carbon nanospheres	94
4.2.3.	Results and discussion	94
4.2.3.1.	Scanning electron microscopy	94
4.2.3.2.	Transmission electron microscopy	95
4.2.3.3.	Energy dispersive spectroscopy (EDS)	95
4.2.3.4.	Powder X-ray diffraction study	96
4.2.3.5.	Raman Spectroscopy	96
4.2.3.6.	Electrochemical behaviour	97
4.3.	Carbon nanocubes from Bean Seeds (Phaseolus sp.)	98
4.3.1.	Materials	98
4.3.2.	Preparation of carbon nanocubes	98
4.3.3.	Results and discussion	99
4.3.3.1.	Scanning electron microscopy and transmission	99
	electron microscopy	
4.3.3.2.	Powder X-ray diffraction study of carbon nanocubes	100
4.3.3.3.	Raman Spectrum of carbon nanocubes	101
4.3.3.4.	Electrochemical behaviour of as-obtained carbon	101
	nanocubes	
4.3.3.5.	Antioxidant activity of carbon nanocubes	104
4.4.	Carbon nanoparticles from Castor oil seed and seed	105
	coat (Ricinus communis)	
4.4.1.	Materials	105
4.4.2.	Synthesis of carbon nanomaterials	105
4.4.3.	Results and discussion	106
4.4.3.1.	Scanning electron microscopy	106
4.4.3.2.	Transmission electron microscopy	106
4.4.3.3.	XRD analysis of carbon nanoparticles from	108
	castor seed coat	
4.4.3.4.	Raman study of carbon nanoparticles from	108
	castor oil seed coat	
4.4.3.5.	Electrochemical behaviour of carbon nanoparticles	109
	from castor oil seed Coat	
4.5.	Carbon nanoparticles from Brassica juncea (lai)	111

seed

4.5.1.	Materials	111
4.5.2.	Preparation of carbon nanoparticles(CNP)	111
4.5.3.	Results and discussion	112
4.5.3.1.	Scanning electron microscopy	112
4.5.3.2.	Transmission electron microscopy	112
4.5.3.3.	Powder X-ray diffraction study	113
4.5.3.4.	Raman study of carbon nanoparticles	114
4.6.	Carbon nanoparticles from Amaranthus spinosus	115
	(denga) seed	
4.6.1.	Materials	115
4.6.2.	Synthesis of carbon nanoparticles(CNP)	116
4.6.3.	Results and discussion	116
4.6.3.1.	Scanning electron microscopy and transmission	116
	electron microscopy	
4.6.3.2.	Powder X-ray diffraction study of	117
	carbon nanoparticles	
4.7.	Carbon nanoparticles from sandalwood (Santalum	118
	<i>sp.)</i> seed	
4.7.1.	Materials	118
4.7.2.	Synthesis of carbon nanoparticles	119
4.7.3.	Results and discussion	119
4.7.3.1.	Scanning electron microscopy	119
4.7.3.2.	Transmission electron microscopy	119
4.7.3.3.	Powder X-ray diffraction analysis of carbon	120
	nanoparticles	
4.8.	Carbon nano particles from kanchan (Bauhinia	121
	acuminata) seed	
4.8.1.	Materials	121
4.8.2.	Synthesis of carbon nanoparticles (CNP)	122
4.8.3.	Result and discussion	122
4.8.3.1.	Scanning electron microscopy and transmission	122
	electron microscopy	

	4.8.3.2.	Powder X-ray diffraction study and Raman study	123
	4.9.	Carbon nanoparticles from tishi seed(Linum	124
		usitatissimun)	
	4.9.1.	Materials	124
	4.9.2.	Synthesis of carbon nanoparticles	125
	4.9.3.	Results and discussion	125
	4.9.3.1.	Transmission electron microscopy	125
	4.9.3.2.	XRD analysis	126
	4.10.	Nanoparticles from seed coat of	127
		mahogany(Swietenia mahogani)	
	4.10.1.	Materials	127
	4.10.2.	Synthesis of carbon nanoparticles (CNP)	128
	4.10.3.	Results and discussion	128
	4.10.3.1.	Transmission electron microscopy	128
	4.10.3.2.	XRD analysis	129
		References	130
Chapter	5	Synthesis of carbon nanoflakes and fibrous	133
		carbon	
	5.1.	Introduction	133
	5.2.	Carbon nanomaterials from palmyra (Borassus	134
		flabellier) fibres and seeds	
	5.2.1.	Materials	134
	5.2.2.	Preparation of carbon nanomaterials	135
	5.2.3.	Results and discussion	135
	5.2.3.1.	Scanning electron microscopy and transmission	136
		electron microscopy	
	5.2.3.2.	Powder X-ray diffraction study of carbon nanofibres	138
	5.2.3.3.	Antioxidant activity of carbon nanofibres	139
	5.3.	Carbon nanoflakes from blady grass (Imperata	140
		cylindrica)	
	5.3.1.	cylindrica) Materials	140
	5.3.1. 5.3.2.	<i>cylindrica</i>) Materials Synthesis of carbon nanoflakes	140 141

5.3.3.1.	Scanning electron microscopy and	141
	transmission electron microscopy	
5.3.3.2.	X-ray diffraction study	142
5.3.3.3.	Antioxidant activity of carbon nanoflakes	143
5.4.	Carbon nanofibres from luffa (Luffa cylindrica)	144
	fibres	
5.4.1.	Materials	144
5.4.2.	Synthesis of carbon nanofibres (CNF)	145
5.4.3.	Results and discussion	145
5.4.3.1.	Scanning electron microscopy and transmission	145
	electron microscopy	
5.4.3.2.	XRD analysis of carbon nanofibre	146
5.5.	Honey-comb carbon nanofibre from Pajanelia	146
	longifolia seeds	
5.5.1.	Materials	146
5.5.2.	Synthesis of carbon nanofibre	147
5.5.3.	Results and discussion	147
5.5.3.1.	Scanning electron microscopy	147
5.5.3.2.	X-ray diffraction study of carbon nanofibre	149
5.6.	Carbon nanoflakes from Crassocephalum	149
	crepidioides seed hairs	
5.6.1.	Materials	149
5.6.2.	Preparation of carbon nanoflakes	150
5.6.3.	Results and discussion	150
5.6.3.1.	Transmission electron microscopy	150
5.6.3.2.	X-ray diffraction Study	151
5.6.3.3.	Photocatalytic activity	152
5.7.	Carbon nanofibres from Daisy (Tridax procumbens)	154
	seed hairs	
5.7.1.	Materials	154
5.7.2.	Synthesis of carbon nanofibres from daisy plant	154
5.7.3.	Results and discussion	154
5.7.3.1.	Scanning electron microscopy and transmission	155

electron microscopy

5.7.3.2.	XRD analysis of carbon nanofibre	156
5.8.	Hollow carbon nanofibres accessed from	156
	inflorescence of Eulalia fastigiata	
5.8.1.	Materials	156
5.8.2.	Synthesis of carbon nanofibres	157
5.8.3.	Results and discussion	157
5.8.3.1.	Scanning electron microscopy and transmission	158
	electron microscopy	
5.8.3.2.	X-ray diffraction study analysis of hollow carbon	159
	nanofibres	
5.9.	Porous carbon nanomaterials from psyllium seed	160
	husk, Plantago sp.	
5.9.1.	Materials	160
5.9.2.	Synthesis of porous carbon nanomaterials	161
5.9.3.	Results and discussion	161
5.9.3.1.	Scanning electron microscopy	162
5.9.3.2.	X-ray diffraction analysis	163
5.9.3.3.	EDS analysis	164
5.9.3.4.	Photocatalytic activity	165
5.10.	Carbon nanosieve from papaya stems fibre (Carica	166
	papaya)	
5.10.1.	Materials	166
5.10.2.	Synthesis of carbon nanosieve	166
5.10.3.	Results and discussion	167
5.10.3.1.	Scanning electron microscopy	167
5.10.3.2.	X-ray diffraction study	168
5.11.	Carbon nanofibres from seed of Oroxylum indicum	169
5.11.1.	Materials	169
5.11.2.	Synthesis of carbon nanofibres	169
5.11.3.	Results and discussion	169
5.11.3.1.	Scanning electron microscopy	169
5.11.3.2.	Powder X-Ray diffraction study	170

Chapter	6	Synthesis of carbon-silica nanocomposites from	187
		References	184
	5.15.3.2.	Powder X-ray diffraction study	183
		electron microscopy	
	5.15.3.1	Scanning electron microscopy and transmission	181
	5.15.3.	Results and discussion	181
	5.15.2.	Synthesis of carbon nanofibres	181
	5.15.1.	Materials	180
		fibres	
	5.15.	Carbon nanofibres from betel nut (Areca catechu)	180
	5.14.3.2.	Powder X-ray diffraction study	179
	5.14.3.1.	Scanning electron microscopy	178
	5.14.3.	Results and discussion	178
	5.14.2.	Synthesis carbon nanoflakes	178
	5.14.1.	Materials	177
		(Spinacia oleracea)	
	5.14.	Carbon nano flakes from seed coat of spinach	177
	5.13.3.3.	X-ray diffraction study	177
	5.13.3.2.	EDS analysis	176
		electron microscopy	
	5.13.3.1.	Scanning electron microscopy and transmission	175
	5.13.3.	Results and discussion	175
	5.13.2.	Synthesis of carbon nanofibres	175
	5.13.1.	Materials	174
	5.13.	Carbon nanoflakes from bontula, Bombax insigne	174
	5.12.3.2.	Powder X-ray diffraction study	174
		electron microscopy	
	5.12.3.1.	Scanning electron microscopy and transmission	172
	5.12.3.	Results and discussion	172
	5.12.2.	Synthesis of carbon nanosheets	171
	5.12.1.	Materials	171
		Bougainvillea spectabilis	
	5.12.	Carbon nanosheets from colorful papery bracts of	171

algae

6.1.	Introduction	187
6.2.	Carbon- silica nanocomposites from a blue-green	189
	alga, Scytonema guyanense	
6.2.1.	Materials	189
6.2.2.	Synthesis of nanocomposites	189
6.2.3.	Results and discussion	190
6.2.3.1.	Scanning electron microscopy and transmission	190
	electron microscopy	
6.2.3.2.	Energy dispersive spectral (EDS) study	192
6.2.3.3.	FT-IR study	192
6.2.3.4.	Powder X-ray diffraction study	193
6.2.3.5.	Fluorescent study	193
6.2.3.6.	Assessment of antioxidant activity	194
6.3.	Carbon- silica nanocomposites from a green alga,	194
	Trentepohlia aurea	
6.3.1.	Materials	194
6.3.2.	Synthesis of nanocomposites	195
6.3.3.	Results and discussion	195
6.3.3.1.	Transmission electron microscopy	195
6.3.3.2.	Powder X-Ray diffraction study	196
6.3.3.3.	FT-IR study	197
6.3.3.4.	Assessment of antioxidant activity	198
6.4.	Carbon- silica nanocomposites from a green alga,	199
	<i>spirogyra</i> sp.	
6.4.1.	Materials	199
6.4.2.	Synthesis of nanocomposites	199
6.4.3.	Results and discussion	199
6.4.3.1.	Transmission electron microscopy	200
6.4.3.2.	Powder X-Ray diffraction study	200
6.4.3.3.	FT-IR study	201
6.4.3.4.	Assessment of antioxidant activity	202
	References	203

Chapter	7	Synthesis of metal based nanomaterials	205
	7.1.	Introduction	205
	7.2.	Calcium sulphate nanocomposites from plant	206
		charcoal	
	7.2.1.	Materials	206
	7.2.2.	Synthesis of calcium sulphate nanocomposite	207
	7.2.3.	Results and discussion	207
	7.2.3.1.	Scanning electron microscopy of calcium sulphate	207
		nanocomposite	
	7.2.3.2.	Energy dispersive spectral (EDS) study	208
	7.2.3.3.	X-ray diffraction studies	208
	7.2.3.4.	Study of antimicrobial activity	210
	7.3.	Calcium carbonate nanoflakes from waste bond	211
		paper	
	7.3.1.	Materials	211
	7.3.2.	Synthesis of the materials	211
	7.3.3.	Results and discussion	212
	7.3.3.1.	Scanning electron microscopy	212
	7.3.3.2.	Transmission electron microscopy	212
	7.3.3.3.	Energy dispersive spectral study	213
	7.3.3.4.	FT-IR study	214
	7.3.3.5.	Powder X-ray diffraction study	215
	7.3.3.5.1.	Modified Debye-Scherrer equation	216
	7.3.3.5.2	Williamson-Hall (W-H) approach	217
	7.3.3.5.3	Specific surface area	218
	7.3.3.6.	Capacitance Measurement	218
	7.4.	Calcium carbonate nanoparticles from leaves of	220
		Dalbergia sissoo	
	7.4.1.	Materials	220
	7.4.2.	Synthesis of the nanoparticles	220
	7.4.3.	Results and discussion	220
	7.4.3.1.	Scanning electron microscopy	220
	7.4.3.2.	Transmission electron microscopy	221

Chapter	8	Summary	233
		References	230
	7.5.3.2.	Powder X-ray diffraction study	229
	7.5.3.1.	Transmission electron microscopy	228
	7.5.3.	Results and discussion	228
	7.5.2.	Synthesis of the nanoparticles	227
	7.5.1.	Materials	227
		from leaves of Delonix regia	
	7.5.	Quasi-spherical calcium carbonate nanoparticles	227
	7.4.3.4.3.	Photocatalytic activity	225
	7.4.3.4.2.	Williamson-Hall (W-H) approach	224
	7.4.3.4.1.	Modified Debye-Scherrer equation	224
	7.4.3.4	X-Ray diffraction study	222
	7.4.3.3.	Energy dispersive spectral study	222

Appendix

Abbreviations

SEM	Scanning electron microscopy
TEM	Transmission electron microscopy
HRTEM	High resolution transmission electron microscopy
SAED	Selected area electron diffraction
EDS	Energy dispersive spectra
ED	Electron diffraction
FT-IR	Fourier transform infrared
UV-Vis	Ultraviolet-visible
MB	Methylene blue
DPPH	Diphenyl picryl hydrazyl
CNM	Carbon nanomaterials
CNT	Carbon nanotube
SWCNT	Single walled carbon nanotube
MWCNT	Multiwalled carbon nano tube
CNW	Carbon nanowhisker
CNP	Carbon nanoparticles
CNS	Carbon nanospheres
CNF	Carbon nanoflake
DLC	Diamond like carbon
CVD	Chemical vapour deposition
XRD	X-ray diffraction
JCPDS	Joint committee on powder diffraction standard
FWHM	Full width at half maximum
fcc	Face centred cubic
EDAX	Energy dispersive X-ray analysis
W-H	Williamson-Hall
SC-50	Scavenging concentration 50
CV	Cyclic voltammetry
CD	Charge-discharge
SC	Super capacitors
Csp	Specific capacitance
Ср	Specific capacitance of a single electrode
SSA	Specific surface area
AFM	Atomic force microscopy

Fig. No.	Caption	Page No.
Fig.1.1.	Schematic representation of top down and bottom up approach	4
Fig.1.2.	Experimental setup of (a) chemical vapour deposition unit	8
	(b)pyrolysing unit	
Fig.1.3.	Different types of carbon nanomaterials	9
Fig.1.4.	Schematic of a bottom-gate CNT FET	10
Fig.3.1.	TEM images at magnification 100X of (a) Fe nanoparticles	29
	(b) Ni nanoparticles (c) Co nanoparticles	
Fig.3.2.	Chemical structure of major components of carbon source:	29
	turpentine oil	
Fig.3.3.	SEM micrograph of the as-obtained CNT	31
Fig.3.4.	(a, b) TEM micrographs (c) HRTEM micrograph (d) SAED pattern of MWCNT obtained from turpentine oil under	31
Fig.3.5.	(a,b) TEM micrographs (c) HRTEM micrograph (d) SAEDpattern of MWCNT obtained under catalytic condition fromturpentine oil	32
Fig.3.6.	XRD pattern of MWCNT obtained from turpentine oil under catalyst free condition	33
Fig.3.7.	XRD pattern of MWCNT obtained from turpentine oil using catalyst	34
Fig.3.8.	Photograph of sesame oil	34
Fig.3.9.	Chemical structure of major components of carbon source:	35
	sesame oil	
Fig.3.10.	(a, b) TEM micrographs (c-e,g,h) HRTEM micrographs(f)	37
	SAED pattern of spiral MWCNT obtained from sesame oil	
Fig.3.11	(a) SEM micrograph (b, c) TEM micrographs (d, e) HRTEM micrographs (f) SAED pattern of CNW from sesame oil	38

Fig.3.12.	XRD pattern of MWCNT obtained from sesame oil (catalyst free)	40
Fig.3.13.	XRD pattern of CNW from sesame oil using catalyst	41
Fig.3.14.	UV-visible spectra (DPPH scavenging)	42
Fig.3.15.	(a-e) Time dependent DPPH scavenging by varying MWCNTconcentration (f) DPPH scavenging (%) at different weightof MWCNT	43
Fig.3.16.	Chemical structure of major components of carbon source: soybean oil	44
Fig.3.17.	(a-e) TEM micrographs (f, g) HRTEM micrographs(h)SAED pattern of MWCNT obtained from soybean oil without using catalyst	46
Fig.3.18.	(a) SEM micrograph (b) TEM micrograph (c) HRTEM micrograph (d) SAED pattern of MWCNT obtained from soybean oil using Ni catalyst	47
Fig.3.19.	XRD pattern of MWCNT obtained under catalyst free condition from soybean oil	48
Fig.3.20.	XRD pattern of MWCNT obtained using Ni catalyst from soybean oil	49
Fig.3.21.	Photograph of sunflower oil	50
Fig.3.22.	(a)SEM micrograph (b-d) TEM micrograph (e) HRTEM micrograph (f) SAED pattern of MWCNT obtained from sunflower oil using catalyst	51
Fig.3.23.	XRD pattern of MWCNT from sunflower oil using catalyst	52
Fig.3.24.	(a-e) Time dependent DPPH scavenging by varying MWCNT concentration (f) DPPH scavenging (%) at different weight of MWCNT	53
Fig.3.25.	Chemical structure of major components of carbon source: mustard oil	54
Fig.3.26.	(a,b) SEM micrographs (c) TEM micrograph(d,e) HRTEM micrographs (f) SAED pattern of MWCNT obtained from refined mustard oil using catalyst	55
Fig.3.27.	XRD pattern of MWCNT obtained from mustard oil using catalyst	56

Fig.3.28.	 (A) Cyclic voltammogram of double layer capacitor; a rectangular graph (X) confirming no electrochemical reactions in potential range of 0.0 V to 1.0 V while graph(Y) did not show any constant current in the selected potential range; (B) pseudo capacitor showing typical oxidation and reduction peaks 	58
Fig.3.29.	(a) CV curve of as-obtained MWCNT at different scan rate(5- 500 mV/s)in1N KOH solution (b)Effect of scan rate on capacitance	60
Fig.3.30.	Five cycles of constant current charge/discharge	60
Fig.3.31.	Charge-discharge curves of a capacitor cell made with as- obtained MWCNT at current of 1mA	61
Fig.3.32.	Ghee (clarified butter from cow's milk)	62
Fig.3.33.	(a, b) SEM micrographs of as-obtained CNT from ghee	63
Fig34.	(a,b) TEM micrographs (c) HRTEMmicrograph (d)SAED pattern of MWCNT from <i>ghee</i>	63
Fig.3.35.	XRD pattern of the as obtained MWCNT from ghee	64
Fig.3.36.	Williamson-Hall plot of MWCNT from ghee	65
Fig.3.37.	(a-e) Time dependent DPPH scavenging by varyingMWCNT concentration (f) DPPH scavenging (%) atdifferent weight of MWCNT	66
Fig.3.38.	(a) SEM micrograph (b,c) TEM micrographs(d,e)HRTEMmicrograph (f) ED pattern of nanowhisker / necklace	69
Fig.3.39.	(a-d) TEM micrographs (e) HRTEM micrograph (f) SAED pattern of nanorings from palmolein oil	70
Fig40.	(a)XRD pattern of carbon nanowhisker obtained from palmolein oil (b) XRD pattern of carbon nanorings obtained from palmolein oil	71
Fig.3.41.	(a,b) SEM micrograps (c) TEM micrograph(d,e) HRTEMmicrograph (f) EDpattern of MWCNT obtained from D-fructose	73

Fig.3.42.	(a,b) SEM micrographs (c,d) TEM micrographs(e) HRTEM	74
	micrograph (f) SAED pattern of CNW obtained from D-	
	fructose	
Fig.3.43.	XRD pattern of MWCNT obtained from D-fructose	75
Fig.3.44.	EDS of MWCNT obtained from D-fructose	75
Fig.3.45.	XRD pattern of CNW obtained from D-fructose	76
Fig.3.46.	EDS of CNW obtained from D-fructose	76
Fig.3.47.	(a) SEM micrograph (b) TEM micrograph (c) HRTEM micrograph (d) ED pattern of the material obtained from 1-butanol	78
Fig.3.48.	 (a) SEM micrograph (b) TEM micrograph (c) HRTEM micrograph (d) SAED pattern of MWCNT from 1- butanol 	79
Fig.3.49.	XRD pattern of the CNW obtained using Ni catalyst from 1- butanol	80
Fig.3.50.	XRD pattern of MWCNT obtained from 1-butanol using Co catalyst	81
Fig.3.51.	EDS of MWCNT from 1-butanol using cobalt nanoparticles as catalyst	81
Fig.3.52.	(a,b) SEM micrographs (c,d) TEM micrographs (e) HRTEMmicrograph (f) SAED pattern of MWCNT obtained fromvinyl alcohol	83
Fig.3.53.	XRD pattern of the materials obtained from vinyl alcohol	84
Fig.4.1.	Photographsof(a)Delonixregiaand(b)Delonixregia	93
Fig.4.2.	(a) SEM micrograph of as prepared carbon nanospheres(b)histogram showing average particle size	94
Fig.4.3.	(a,b) TEM images (c) HRTEM image and (d) SAED pattern of the nanospheres obtained from the seeds of <i>Delonixregia</i>	95
Fig.4.4.	(a) EDS (b) XRD pattern (c) Raman spectrum of the nanospheres obtained from the seeds of <i>Delonixregia</i>	96

Fig.4.5.	CV curves of electrode prepared using CNS at different scan	97
	rate (5 - 200 mV/s) in 1N KOH solution	
Fig.4.6.	Photographs of bean (<i>Phaseolus sp.</i>)(a) plant and (b)	98
	seeds	
Fig. 4.7.	(a) SEM micrograph (b-d) TEM micrographs (e) HRTEM	99
	micrograph (f) SAED pattern of the carbon nanocubes	
	obtained from bean seeds	
Fig.4.8.	PXRD pattern of carbon nanocubes	100
Fig.4.9.	Raman spectrum of carbon nanocubes	101
Fig.4.10.	CV behaviour of electrode prepared using carbon	103
	nanomaterials at different scan rate (5 - 500 mV/s) in 1N $$	
	KOH solution	
Fig.4.11.	Charge-Discharge curves of a capacitor cell made with carbon	103
	nanomaterials at current of 1mA	
Fig.4.12	(a) Time dependent DPPH free radical scavenging (b) DPPH	104
	scavenging (%) at different weight of as prepared nanocubes	
Fig.4.13.	Photographs of (a) castor oil plant (b, c) castor oil seeds	105
Fig.4.14.	SEM Micrographs of (a, b) carbon nanomaterials from castor	107
	oil seeds and (c, d) carbon nanoparticles from castor oil seed	
	coat	
Fig.4.15.	(a-c) TEM micrograph (d) SAED pattern of carbon	107
	nanoparticles from castor oil seed coat	
Fig.4.16.	XRD pattern of carbon nanoparticles from castor oil seed coat	108
Fig.4.17.	Raman spectrum of carbon nanoparticles from castor seed	109
	coat	
Fig.4.18.	(a) CV curve at different scan rate (5 - 500 mV/s) in 1N KOH	111
	solution (b) CD curve at current of 1 mA of a capacitor made	
	with as prepared carbon nanoparticles	
Fig.4.19.	Photographs of (a)Brassica juncealeaf and	111
	(b)Brassica junceaseeds	

Fig.4.20.	(a) SEM micrograph (b-d) TEM micrographs (e)	113
	HRTEM micrograph (f) SAED pattern of the materials	
	obtained from Brassica junceaseed	
Fig.4.21.	XRD pattern of carbon nanoparticles obtained from Brassica	114
	juncea seeds	
Fig.4.22.	Raman spectrum of carbon nanoparticles obtained from	115
	Brassica juncea seeds	
Fig.4.23.	Photographs of (a)Amaranthus spinosus plant	115
	(b)Amaranthus spinosus seeds	
Fig.4.24.	SEM micrograph of the nanoparticles obtained from	116
	Amaranthus spinosusseed	
Fig.4.25.	(a,b)TEM Micrographs (c) HRTEM micrograph (d)	117
	SAED pattern of the carbon nanoparticle obtained from	
	Amaranthus spinosus seed	
Fig.4.26.	XRD spectra of the particle obtained from	118
	Amaranthus spinosus seed	
Fig.4.27.	Photographs of (a) sandalwood tree and (b) sandalwood seeds	118
F : 4.30		110
Fig.4.28.	(a,b)SEM micrographs of the particles obtained from	119
-	sandalwood seed	100
Fig.4.29.	(a , b) TEM micrographs (c) HRTEM micrograph (d)	120
-	SAED pattern of the particles obtained from sandalwood seed	
Fig.4.30.	XRD pattern of the particles obtained from sandalwood seed.	121
Fig.4.31.	Photographs of (a) kanchan flower and (a) kanchan seeds	122
-		
Fig.4.32.	(a) SEM micrograph (b,c)TEM micrographs (d)SAED of the	123
	particles obtained from kanchan flower seed	
Fig.4.33.	(a)XRD pattern (b) Raman spectrum of the particles obtained	124
	from kanchan flower seed	
Fig.4.34.	Photographs of (a) tishi plant and (b) tishiseeds	125
Fig 4 35	(a b) TFM images (c) HRTFM image (d) SAFD pattern of	126
115.4.22.	the materials obtained from tishi seed	120
Fig.4.33. Fig.4.34. Fig.4.35.	 particles obtained from kanchan flower seed (a)XRD pattern (b) Raman spectrum of the particles obtained from kanchan flower seed Photographs of (a) tishi plant and (b) tishiseeds (a,b) TEM images (c) HRTEM image (d) SAED pattern of the materials obtained from tishi seed. 	124 125 126

Fig.4.36.	XRD pattern of the nanoparticles obtained from tishi plant	127
	seeds	
Fig.4.37.	Photographs of (a)mehogony tree and (b)mehogony seeds	127
Fig.4.38.	(a, b) TEM images (c) HRTEM (d) SAED pattern of the	128
	nanoparticles obtained from seed coat of mahogany	
Fig.4.39.	XRD pattern of carbon nanoparticles obtained from seed coat	129
	of mahogany	
Fig.5.1.	Photographs of (a) palmyra fruit and (b) palmyra fibres and	135
	(c) palmyra seed	
Fig.5.2.	(a-d) SEM micrographs of as prepared nanofibres from	136
	palmyra fibres	
Fig.5.3.	(a-d) TEM micrographs (e) HRTEM micrograph	137
-	(f) SAED pattern of CNF obtained from palmyra fibre	
Fig.5.4.	(a) SEM micrograph (b) TEM micrograph (c) HRTEM	138
0	micrograph (d) SAED pattern of as prepared carbon	
	nanoparticles from palmyra seeds	
Fig.5.5.	XRD of as prepared carbon nanofibres from palmyra fibres	139
8		
Fig.5.6.	(a) DPPH radical scavenging (b) SC-50 valueofas prepared	140
	carbon nanofibres	
Fig.5.7.	Photo graphs of (a)blady grass (b) inflorescence of blady grass	141
Fig.5.8.	(a,b) SEM micrographs (c) HRTEM micrograph (d)	142
C	SAED pattern of as prepared nanoflakes from florescence of	
	Imperatacylindrica.	
Fig.5.9.	XRD pattern of the nanoflakes obtained from inflorescence of	143
0	Imperatacylindrica	
Fig.5.10.	(a) DPPH radical scavenging (b) SC-50 value of as prepared	144
8	nanoflakes	
Fig.5.11.	Photographs of (a)Luffa cylindrica fruit (b)Luffa	144
	cylindricafibre	
Fig.5.12.	(a) SEMmicrograph (b,c) TEM micrographs (d) SAED	145
-	pattern of the nanofibres obtained from the fibres of Luffa	
	cylindrica	

- Fig.5.13. XRD pattern of the carbon nanofibres obtained from the 146 fibres of *Luffa cylindrica*
- Fig.5.14. (a)*Pajanelialongifolia* plant (b) dried *Pajanelialongifolia* 147 seeds
- **Fig.5.15.** (a-f) SEM micrographs of nanofibre obtained from the seeds 148 of *Pajanelialongifolia*
- Fig.5.16. XRD pattern of nanofibre obtained from the seeds of 149 Pajanelialongifolia
- Fig. .17. (a) Photograph of *Crassocephalum crepidioides*plantand (b) 150 optical microscopic image of seed hairs of *Crassocephalum crepidioides*.
- Fig. .18. (a- d) TEM images (e) HRTEM image (f) SAED pattern of 151 carbon nanoflakes obtained from *Crassocephalum crepidioides* seed hairs.
- Fig.5.19.X-Ray diffraction spectrum of the carbon nanoflakes obtained152from Crassocephalumcrepidioidesseed hairs.
- Fig. .20. (a)Time dependent UV-visible peak intensities at 665 nm of 153 different concentrations of MB solution
 (b) concentration dependent UV-visible intensities at 665 nm of (1x10⁻⁵ mol/L) with different amounts of nanoflakes material and (c) degradation of MB solution (1x10⁻⁵ mol/L) with visible light treated product and non treated product (MB+CNF).
- Fig.5.21.Photograph of daisy plant154
- **Fig.5.22.** (a, b)SEM micrograph (c) HRTEM micrograph (d) SAED 155 pattern of the nanofibres obtained from daisy seeds
- **Fig.5.23.** XRD pattern of the nanofibres obtained from daisy seed hair 156
- **Fig.5.24.** Photographs of (**a**, **b**)inflorescence of *Eulalia fastigiata* 157
- Fig.5.25. (a-d) SEM micrographs of hollow nanofibres accessed from 158 inflorescence of *Eulalia fastigiata*

Fig.5.26.	(a,b) TEM images (c) HRTEM image (d) SAED patternof	159
	hollow nano fibres accessed from inflorescence of Eulalia	
	fastigiata	
Fig.5.27.	XRD pattern of nano fibres accessed from inflorescence of	160
	Eulalia fastigiata	
Fig.5.28.	Photographs of (a) psyllium plant (b) psyllium seeds and	161
	(c) seed husks	
Fig.5.29.	(a-d) SEM micrographs of porous carbon nanomaterials from	162
	psyllium seed husk	
Fig.5.30.	(a,b)TEM micrographs (c) HRTEM micrograph (d) SAED	163
	pattern of the porous carbon nanomaterials from psyllium	
	seed husk	
Fig.5.31.	XRD pattern of the porous carbon nanomaterials from	164
	psyllium seed husk	
Fig.5.32.	EDS spectrum and elemental composition of 'as obtained'	164
	porous carbon nanomaterials from psyllium seed husk	
Fig.5.33.	(a)Time dependent UV-visible peak intensities at 665 nm of	165
	different concentrations of MB solution (b)	
	concentration dependent UV-visible intensities at 665 nm of	
	$(1 \times 10^{-5} \text{ mol/L})$ with different amounts of nanoflakes material	
	and (c) degradation of MB solution $(1x10^{-5} \text{ mol/L})$ with	
	visible light treated product and non treated product	
	(MB+CNM)	
Fig.5.34.	Photographs of (a) papaya plant (b) papaya fibres	166
Fig 5 35	(a-d) SEM micrograph of carbon nanosieve from papaya	167
1 15:0:00	stems fibre	10,
Fig.5.36.	XRD pattern of carbon nanosieve from papaya stem fibre	168
1 90000		100
Fig.5.37.	Photographs of (a) <i>Oroxylumindicum</i> plant (b, c)	169
	Oroxylumindicum seeds	
Fig.5.38.	(a, b) SEM micrographs of nanofibres from seed of	170
	Oroxylumindicum	
E' 5 30	VDD with any of the set of the	170

Fig.5.39. XRD pattern of nanofibres from seed of *Oroxylumindicum* 170

Fig.5.40.	Photographs of (a)colourful papery bracts (b) dried papery	171
	bracts of Bougainvillea spectabilis	
Fig.5.41.	(a-d) SEM micrographs of nanosheets from papery bracts of	172
	Bougainvillea spectabilis	
Fig.5.42.	(a-d) TEM images (e) HRTEM image (f) SAED pattern of	173
	nanosheets from colorful papery bracts of Bougainvillea	
	spectabilis	
Fig.5.43.	XRD pattern of nanosheets from colorful papery bracts of	174
	Bougainvillea spectabilis	
Fig.5.44.	(a, b) Photographs of bontula (Bombax insigne)fibres	175
Fig.5.45.	(a, b) SEM micrographs (c) HRTEM micrograph	176
	(d) SAED patternof nanoflakes obtained from bontula	
Fig.5.46.	EDS and chemical composition of nanoflakes	177
Fig.5.47.	XRD pattern of nanoflakes obtained from bontula	177
Fig.5.48.	Photographs of (a) spinach plant (b) spinach seed coat	178
Fig.5.49.	(a-f) SEM micrographs of nano flakes from seed coat of	179
	spinach	
Fig.5.50.	XRD pattern of nano flakes from seed coat of spinach	180
Fig.5.51.	Photographs of (a , b) betel nut(c) betel nut fibre	180
Fig.5.52.	(a-d) SEM micrographs of carbon nanofibres from betel nut	182
	fibres	
Fig.5.53.	(a, b) TEM micrographs (c)HRTEMmicrograph(d)SAED	182
	pattern of nanofibres	
Fig.5.54.	XRD pattern of carbon nanofibres from betel nut fibres	183
Fig.6.1.	Optical microscopic image of Scytonemaguyanensevar. minus	189
Fig.6.2.	SEM micrograph of nanocomposite from blue-green alga	191
Fig.6.3.	(a,b) TEM image (c) HRTEM image and (d) SAED pattern	191
	of nanocomposites from blue-green alga	

Fig.6.4.	EDS and elemental composition of nanocomposites from	192
Fig.6.5.	FT-IR spectrum of nanocomposites from blue-green alga	192
Fig.6.6.	Powder X-Ray diffraction pattern of nanocomposites from	193
Fig.6.7	(a) Time dependent DPPH scavenging and (b) DPPHscavenging (%) at different weight of nanocomposites	194
Fig.6.8.	Optical microscopic image of Trentepohlia aurea	195
Fig.6.9.	(a) TEM image (b) HRTEM image and (c, d) SAED pattern of nanocomposite from <i>Trentepohliaaurea</i>	196
Fig.6.10.	Powder X-ray diffraction of nanocomposites from <i>Trentepohliaaurea</i>	197
Fig.6.11.	FT-IR spectrum of nanocomposites from <i>Trentepohliaaurea</i>	198
Fig.6.12.	(a) Time dependent DPPH scavenging and (b) DPPH scavenging (%) at different weight of nanocomposites	198
Fig.6.13.	Optical microscopic image of Spirogyra neglecta	199
Fig.6.14.	(a) TEM image (b) HRTEM image and (c, d) SAED pattern of nanocomposite obtained from a green alga	200
Fig.6.15.	Powder X-Ray diffraction of nanocomposites from a green alga	201
Fig.6.16.	FT-IR spectrum of nanocomposites obtained from a green alga	202
Fig.7.1.	(a) SEM image of the synthesized material, (b) single particles (c) lower resolution image showing aggregates of particles	207
Fig.7.2.	EDS of the calcium sulphate nanocomposite	208
Fig.7.3.	Powder X-ray diffraction pattern of the material. At the top the experimental (red) and the bottom the simulated powder pattern (blue) for $CaSO_4$ are plotted.	209

Fig.7.4.	Photographs of four culture plates (a) <i>Pseudomonas</i> <i>aeruginosa</i> (b) <i>Klebsillapneumoni</i> (c) <i>Bacillus subtilis</i> (d)	211
	Streptococcus faecaelis	
Fig.7.5.	(a , b)SEM micrographs of CaCO ₃ nanoflakes	212
Fig.7.6.	(a , b) TEM image (c) HRTEM image and (d) SAED pattern	213
Fig.7.7.	EDAX spectrum and elemental composition of as obtained material	214
Fig.7.8.	FT- IR spectrum of CaCO ₃ nanoflakes	214
Fig.7.9.	XRD pattern of the synthesized nanomaterials	215
Fig.7.10.	Modified Scherrer plot for the synthesized materials	217
Fig.7.11.	Williamson- Hall plot of the calcium carbonate nanoflake	218
Fig.7.12.	(a)CV curve of the synthesised material at different scan rate (5 - 500 mV/s) in 1N KOH solution and (b) effect of scan rate	219
	on capacitance	
Fig.7.13.	(a, b) Photographs of leaves of <i>Dalbergiasissoo</i>	220
Fig.7.14.	(a, b) SEM micrographs of the synthesised materials	221
Fig.7.15	(a , b) TEM image (c) HRTEM image and (d) ED pattern of nanomaterial	221
Fig.7.16.	EDAX spectrum and elemental composition of as obtained materials	222
Fig.7.17.	XRD pattern of nanomaterials from leaves of Dalbergiasissoo	222
Fig.7.18.	Modified Scherrer plot for the synthesized materials	224
Fig.7.19.	Williamson-Hall plot of the synthesised material	225
Fig.7.20.	(a) Time dependent UV-visible peak intensities at 665 nm of	226

different concentrations of MB solution (b) concentration dependent UV-visible intensities at 665nm of $(1x10^{-5} \text{ mol/L})$ with different amounts of nanoparticles and (c) degradation of MB solution $(1x10^{-5} \text{ mol/L})$ with visible light treated product (MB+NP+ Light) and non treated product (MB+NP).

Fig.7.21.	Photograph of leaves of Delonix regia	227
Fig.7.22.	(a, b) TEM images (c) HRTEM image and (d) SAED pattern	228
	of the materials obtained from the leaves of Delonix regia	

Fig.7.23. XRD pattern of the material obtained from leaves of *Delonix* 229 *regia*

Table No.	Caption	Page No.
Table 2.1	Precursors used for the nanomaterials synthesis	24
Table 3.1	Specific capacitance at different scan rate	59
Table 3.2	Antioxidant efficacy of MWCNTs	67
Table 4.1	Specific capacitance at different scan rate	98
Table 4.2	Specific capacitance at different scan rate	102
Table 4.3	Specific capacitance at different scan rate for 0.002 g of CNPs	110
Table 6.1	Antioxidant efficacy of nanocomposites	202
Table 7.1	Elemental composition of the nanocomposite	208
Table 7.2	Antimicrobial activity of the as obtained material	210
Table 7.3.	XRD parameter and crystallite size of as obtained material	216
Table 7.4	Specific capacitance at different scan rate	219
Table 7.5	XRD parameter and crystallite size (D) of the synthesized material	223
Table 8.1	A comprehensive list of type of precursor used and synthesis parameter, morphology and dimension of nanomaterial	234