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ABBREVIATIONS 

 
 NLO :  Non-linear optics 

 OLEDs :  Organic light emitting diodes 

 LC :  Liquid crystal 

 DFT :  Density Functional Theory 

 TD-DFT :  Time dependent-Density Functional Theory 

 FT-IR :  Fourier transform-Infra red 

 NMR :  Nuclear magnetic resonance 

 FAB :  Fast atom bombardment 

 EQY :  Emission Quantum Yield 

 d :  Doublet 

 dd :  Doublet of doublets 

 t :  Triplet 

 POM :  Polarizing optical microscopy 

 DSC :  Differential scanning calorimetry 

 I :  Isotropic 

 1D, 2D, 3D :  One-, two- and three-dimensional 

 PL :  Photoluminescence 

 M :  Molarity 

 HOMO :  Highest occupied molecular orbitals 

 LUMO :  Lowest un-occupied molecular orbitals 

 AcOH :  Acetic acid 

 EtOH :  Ethanol 

 MeOH :  Methanol 

 THF :  Tetrahydrofuran 

 m :  Multiplet 

 DCM :  Dichloromethane 

 ppm :  Parts per million 

 
 


