Dedicated to My Beloved Parents

Late Mrs. Batula Bibi

Late Mr. Habibur Rahaman

DECLARATION

I, Hasimur Rahaman, hereby declare that the thesis entitled "Synthesis, Characterization and Physicochemical Properties of Size and Shape-Selective Manganese Oxides and their Composites" has not been submitted either in whole or in part previously to any other institution for the award of any degree or qualification and does not contain any previously published material or written by another person, except where due reference is made in the text.

Place: Silchar Date: 05.09.2016 Hasimur Rahaman

Acknowledgements

At first, I would like to express my sincere thanks and deep sense of gratitude to Dr. S. K. Ghosh, my supervisor, whose thoughtful suggestions and guidance always support me in carrying out this research work. Without his constant supervision, motivation and inspiration at every step, perhaps this work could not have been matured up to the present level.

I would like to express my gratitude to Prof. P. C. Pal, the Head, Department of Chemistry and Ex. Heads, Prof. N. V. S. Rao and Prof. C. R. Bhattacharjee for their constant support and help during the research work.

I would like to thank Dr. Sk. Jasimuddin for providing facilities for cyclic voltammetry measurements. I would like to offer my gratitude to Prof. S. B. Paul, Dr. P. Mondal, Dr. M. K. Paul, Dr. D. Sengupta, Dr. H. Acharya, Dr. S. Choudhury, Dr. T. Sanjoy Singh and Dr. R. Panchadhayee for their moral support and help during the course of this research work. I would also like to remember Prof. M. R. Islam for providing his laboratory at the initial stage to start this work.

I would like to thank Dr. Nikhil R. Jana, IACS, Kolkata for providing fluorescence microscopic facilities; Dr. Dilip Kumar Maiti, University of Calcutta, Kolkata for providing me lab facilities for some parts of experiments; Dr. Achintya Singh, Bose Institute, Kolkata for Raman measurements; SAIF, NEHU, Shillong for providing electron microscopic facilities; Dr. Susmita Kundu, CSIR-Central Glass & Ceramic Research Institute for providing us gas sensing measurements facilities; Dr. Mahuya Sengupta, Department of Biotechnology, Assam University, Silchar for providing us biological experimental facilities and Dr. Soumen Basu, Thapar University for characterization of some of the materials.

I would like to convey my thanks to Mr. P. R. Ramesh, Mr. S. Bhattacharjee, Mr. B. Nath, Mr. Jahangir Alom Barbhuiya, Mr. Jamil Ahamed Barbhuiya, Mr. L. Hmar, Mr. Rajib Kurmi, Mr. Sanjib Bagdi and all other office staffs for their valuable help during my Ph. D. programme.

I am grateful to my labmates, Dewan Da, Ali Da, Hirak, Sudip and Dorothy for their unwavering support during my Ph. D. work. They were not only the people I worked with, but also my friends in need. I express my sincere thanks to all the Research Scholars (Golam Mohiuddin, Nazma Begum, Ram Krishna Laha, Shubhenjit Hazra, Barun Ghosh, Samiran Garain and Radah M. Laha) of the Department of Chemistry Assam University, Silchar for their constant help and support during my Ph. D. work.

I express my sincere thanks to all other Research Scholars of the Department of Chemistry, for their active co-operation and friendship that made me enjoyable during this research work.

I also thanks my all brothers (Hasibur Rahaman, Hafizur Rahaman and Hamidur Rahaman) and my six sisters, specially my elder sister Moniza Sultana and brother-in law Md. Barkatullah for inspiring and accompanying me throughout the tenure of my Ph. D. work.

I acknowledge Department of Chemistry, Assam University, Silchar, and funding agencies, DST, DBT and UGC, New Delhi for providing infrastructures and financial support.

At last but not the least, I acknowledge and express my heartiest regards to my father, Late Mr. Habibur Rahaman and mother, Late Mrs. Batula Bibi, for their constant affection, motivation, inspiration and help. Without them, I would not been the person what I am today. I would like to thank all my family members for their constant support, encouragements and eagerness throughout my career.

Hasimur Rahaman

TABLE OF CONTENTS

PageList of SymbolsxviiList of AbbreviationsxviiiList of FiguresxixList of TablesxxviiList of Schemesxxviii

		Page
1. General	Introduction	1
1.1.	A Brief Introduction to Nanoparticles	2
1.1.1.	Electronic Properties of Nanoparticles	3
1.1.2.	Surface Activity of the Nanoparticles: High Surface-to-Volume	4
	Ratio	
1.2.	Family of Manganese Oxides	4
1.2.1.	Manganese Oxides at the Nanoscale Dimension	5
1.2.2.	Physicochemical Properties of Manganese Oxide Nanoparticles	8
1.2.2.1.	Photocatalytic Reactions using Manganese Oxides	9
1.2.2.2.	Selective Oxidation of Organic Molecules using Manganese	10
	Oxides as Catalysts	
1.2.2.3.	Electrocatalytic Reactions using Manganese Oxides	11
1.2.2.4.	Synthesis of Metal Oxide Nanocomposites for Sensory	12
	Application	
1.2.2.4.1.	Sensory Mechanism	13
1.2.2.4.2.	Gas Sensing Devices	13
1.2.2.4.3.	Sensing Operating Temperature	14
1.2.2.4.4.	Sensor Resistance to Gas Concentration	14
1.2.2.4.5.	Sensitivity	15
1.2.2.4.6.	Selectivity	15
1.2.2.5.	Magnetic Properties of Manganese Oxides Nanoparticles	15
1.3.	Conclusion	16
1.4.	References	17

2. Experin	nental	23
2.1.	Experimental	24
2.1.1.	Reagents	24
2.1.2.	Instruments	25
3. Soft-Tei	nplated Synthesis of Manganese Oxides and their Catalytic	27
Applicatio	ns	
3.1.	Soft-Templated Synthesis of Mn ₃ O ₄ Microdendelions for	28
	Photocatalytic Dye Degradation	
3.1.1.	Introduction	28
3.1.2.	Experimental Section	30
3.1.2.1.	Synthesis of Mn ₃ O ₄ Microdandelions Using Dye-surfactant	30
	Composites	
3.1.2.2.	Photocatalytic Reaction	31
3.1.3.	Results and Discussion	32
3.1.3.1.	Absorption Spectroscopy	32
3.1.3.2.	Morphology, Composition and Crystallinity of Microdendelions	33
3.1.3.3.	Fourier Transform Infrared Spectroscopy	34
3.1.3.4.	X-ray Diffraction Pattern	35
3.1.3.5.	Thermogravimetric Analysis	35
3.1.3.6.	Schematic Presentation Showing the Formation of Representative	36
	Assemblies at the Dye-Surfactant Assemblies	
3.1.3.7.	Study of the Textural Properties by BET Surface Area	37
	Measurements	
3.1.3.8.	Photocatalytic Degradation of Alizarin red Under Visible Light	37
3.1.4.	Conclusion	40
3.2.	Soft-Templated Synthesis of Mn ₂ O ₃ Nanorods for Selective	41
	Transformation of Alcohols to Aldehydes	
3.2.1.	Introduction	41
3.2.2.	Experimental	43
3.2.2.1	Synthesis of Manganese Oxide Nanorods in Polymer-Surfactant	43
	Conjugates	
3.2.2.2	General procedure for synthesis of aldehydes	43
3.2.3.	Results and Discussion	44

3.2.3.1.	Absorption Spectroscopy	45
3.2.3.2.	Morphology, Composition and Crystallinity of the Mn_2O_3	46
	Nanorods	
3.2.3.3.	Fourier Transform Infrared Spectroscopy	47
3.2.3.4.	X-ray Diffraction Pattern	47
3.2.3.5.	Raman Spectrum	48
3.2.3.6.	Thermogravimetric Analysis	49
3.2.3.7.	Brunauer–Emmett–Teller (BET) Surface Area Measurement	49
	Study	
3.2.3.8.	Catalytic Direct Synthesis of Aldehydes using Mn ₂ O ₃ -rods	50
	Catalyst	
3.2.3.9.	Optimization of Mn ₂ O ₃ -Nanorods Catalysed Oxidation of Benzyl	51
	Alcohol to Benzaldehyde	
3.2.3.10.	Synthesis of Aldehydes, Sugar Aldehydes and Ketones using	52
	Mn ₂ O ₃ -Rods as Catalysts	
3.2.4.	Conclusions	54
3.3.	References	55
4. Synthesi	is of Noble Metal-Manganese Oxide Nanocomposites and their	62
Applicatio	ns in Electrocatalysis and Sensing	
4.1.	Bifunctional Gold-Manganese Oxide Nanocomposites for Water	63
	Oxidation and Oxygen Reduction	
4.1.1.	Introduction	63
4.1.2.	Experimental	65
4.1.2.1.	Synthesis of Gold Nanoparticles	65
4.1.2.2.	Synthesis of Gold-manganese oxide Nanocomposites	66
4.1.3.	Results and Discussion	66
4.1.3.1.	Absorption Spectroscopy	67
4.1.3.2.	Fourier Transform Infrared Spectroscopy	67
4.1.3.3.	Morphology, Composition and Crystallinity of the	68
	Nanocomposites	
4.1.3.4.	X-ray Diffraction Pattern	69
4.1.3.5.	Modification of the Gold Electrodes for the Study of	69
	Electrocatalytic Activity	

4.1.3.6.	Electrocatalytic activity towards Water Oxidation Reaction	70		
	(WOR)			
4.1.3.7.	Study of Water Oxidation Reaction with Different Sizes of the			
	Gold Nanoparticles in the Composites			
4.1.3.8.	Electrocatalytic activity towards Oxygen Reduction Reaction	73		
	(ORR)			
4.1.3.9.	Simultaneous Oxygen Reduction Reaction during Water	74		
	Oxidation			
4.1.4.	Conclusion	77		
4.2.	Mn ₃ O ₄ -Ag Nanocomposites for Sensing of Volatile Organic	78		
	Compounds			
4.2.1.	Introduction	78		
4.2.2.	Experimental	79		
4.2.2.1.	Synthesis of Silver Nanoparticles	79		
4.2.2.2.	Synthesis of Mn ₃ O ₄ -Ag Nanocomposites	80		
4.2.2.3.	Gas Sensing Measurements	81		
4.2.3.	Results and Discussion	81		
4.2.3.1.	Absorption Spectroscopy	82		
4.2.3.2.	Band Gap Engineering in Ag-Mn ₃ O ₄ Nanocomposites	83		
4.2.3.3.	Morphology, Composition and Crystallinity of the Mn ₃ O ₄ NPs	84		
	and Mn ₃ O ₄ –Ag NCs			
4.2.3.4.	Fourier Transform Infrared Spectroscopy of Mn ₃ O ₄ NPs	85		
	andMn ₃ O ₄ -Ag@3NCs			
4.2.3.5.	X-ray Diffraction Patterns of Mn ₃ O ₄ NPs and Ag-Mn ₃ O ₄ NCs	86		
4.2.3.6.	Raman Spectrum of Mn ₃ O ₄ -Ag@3 Nanocomposites	87		
4.2.3.7.	Cyclic voltammograms of Mn ₃ O ₄ NPs, Ag NPs and Mn ₃ O ₄ -Ag@3	88		
	NCs			
4.2.3.8.	Thermogravimetric Analysis of Mn ₃ O ₄ -Ag@3 Nanocomposites	89		
4.2.3.9.	Sensing of Volatile Organic Compounds (VOCs) by Mn ₃ O ₄	89		
	Nanoparticles and Mn ₃ O ₄ –Ag Nanocomposites			
4.2.4.	Conclusions	93		
4.2.5.	References	94		
5. Metal	Oxides-Manganese Oxide Nanocomposites and their	101		

Applicatio	ons in Electrocatalysis and Cytotoxicity Studies	
5.1.	Fe ₃ O ₄ - Mn ₃ O ₄ Nanocomposites for Cytotoxicity Studies	102
5.1.1.	Introduction	102
5.1.2.	Experimental	103
5.1.2.1.	Synthesis of Fe ₃ O ₄ Nanoparticles	103
5.1.2.2.	Synthesis of Fe ₃ O ₄ —Mn ₃ O ₄ Nanocomposites	104
5.1.3.	Results and Discussion	104
5.1.3.1.	Absorption Spectra Analysis and Band Gap	105
5.1.3.2.	Fourier Transform Infrared Spectra of Fe ₃ O ₄ NPs and Fe ₃ O ₄ –	106
	$Mn_3O_4 NCs$	
5.1.3.3.	Raman Spectrum of Fe ₃ O ₄ -Mn ₃ O ₄ NCs	107
5.1.3.4.	X-ray Diffraction Patterns of Fe ₃ O ₄ NPs and Fe ₃ O ₄ -Mn ₃ O ₄ NCs	
5.1.3.5.	Morphology, Composition and Crystallinity of the Fe ₃ O ₄ NPs and	108
	Fe ₃ O ₄ -Mn ₃ O ₄ NCs	
5.1.3.6.	Thermogravimetric Analysis of Fe ₃ O ₄ -Mn ₃ O ₄ Nanocomposites	110
5.1.3.7.	The Magnetic Hysteresis Curves of Fe ₃ O ₄ NPs and Fe ₃ O ₄ -Mn ₃ O ₄	110
	NCs	
5.1.3.8.	In-vitro Cytotoxicity Studies on the Macrophages with Fe ₃ O ₄ -	111
	Mn ₃ O ₄ Nanocomposites	
5.1.3.8.1.	Isolation of Splenic Macrophages from Mice	111
5.1.3.8.2	Cell Viability Assay	111
5.1.3.9.	Analysis of In-vitro Cytotoxicity studies on the Macrophages with	112
	Fe ₃ O ₄ –Mn ₃ O ₄ Nanocomposites	
5.1.4.	Conclusion	114
5.2.	Hybrid Mn ₃ O ₄ –NiO Nanocomposites as Electrocatalysts	115
5.2.1.	Introduction	115
5.2.2.	Experimental	116
5.2.2.1.	Synthesis of Mn ₃ O ₄ Nanoparticles	116
5.2.2.2.	Synthesis of NiO-Mn ₃ O ₄ Nanocomposites	116
5.2.3.	Results and Discussion	117
5.2.3.1.	Absorption Spectra of Mn ₃ O ₄ Nanoparticles and Mn ₃ O ₄ -NiO	117
	Nanocomposites	
5.2.3.2.	Fourier Transform Infrared Spectra of Mn ₃ O ₄ NPs and Mn ₃ O ₄ -	118

NiO NCs

5.2.3.3.	Morphology, Composition and Crystallinity of the Mn ₃ O ₄ NPs	119
	and Mn ₃ O ₄ -NiO NCs	
5.2.3.4.	X-ray Diffraction Pattern of Mn ₃ O ₄ NPs and Mn ₃ O ₄ -NiO	120
	Nanocomposites	
5.2.3.5.	Thermogravimetric Analysis of Mn ₃ O ₄ -NiO Nanocomposites	121
5.2.3.6.	Electrode Modification and Characterisation	121
5.2.3.7.	Overlaid Cyclicvoltammogram of Mn ₃ O ₄ and Mn ₃ O ₄ -NiO	122
	Modified Gold Electrodes in 0.1 M PBS at pH~7.0	
5.2.3.8.	Comparative Linear Sweep Voltammograms (LSV) of	123
	Electrocatalytic Oxidation of Water	
5.2.3.9.	Electrocatalytic Oxidation of Water at Mn ₃ O ₄ -NiO-Au Electrode	124
	in Acetate Buffer Solution	
5.2.3.10.	Electrocatalytic Oxidation of Water at Mn ₃ O ₄ -NiO-Au Electrode	124
	with Different Water Concentrations	
5.2.3.11.	Electrocatalytic Oxidation of Water at Mn ₃ O ₄ -NiO-Au Electrode	125
	with Different Scan Rates	
5.2.3.12.	Profile Showing the Variation of Anodic Peak Potential as a	126
	Function of lnv	
5.2.3.13.	Cyclic Voltammogram of 0.1 M PBS (pH~7.0) at Mn ₃ O ₄ -NiO-	126
	Au Electrode	
5.2.3.14.	Electrocatalytic Oxidation of Water at Mn ₃ O ₄ -NiO-Au Electrode	127
	at Different pH	
5.2.4.15.	Oxygen Evolution Curve During Electrocatalytic Oxidation of	127
	Water with Mn ₃ O ₄ -NiO Modified Electrode under Neutral pH	
	Condition and Digital Camera Photograph Showing the Bubbling	
	of Oxygen on the Electrode Surface	
5.2.4.16.	Controlled Potential Electrolysis (CPE) of Mn ₃ O ₄ -NiO Modified	128
	Gold Electrode	
5.2.4.17.	Long-term Stability of Mn ₃ O ₄ -NiO Modified Electrode Under	129
	Neutral pH Condition	
5.2.4.18.	A Comparative Account of the Performances of Some Related	129
	Electrocatalysts for Water Oxidation Reaction	

5.2.5.	Conclusion	131
5.3.	References	132
6. Synthe	sis, Characterization and Photocalytic Application of Triple	136
Oxide Sen	niconductor Nanocomposites	
6.1.	Introduction	137
6.2.	Experimental	139
6.2.1.	Synthesis of Metal Oxide Nanoparticles	139
6.2.1.1.	Preparation of Manganese Oxide Nanoparticles	139
6.2.1.2.	Preparation of Cadmium Oxide Nanoparticles	139
6.2.2.	Synthesis of Metal Oxide-Metal Oxide Double Composites	140
6.2.2.1	Synthesis of Manganese Oxide-Zinc Oxide Nanocomposites	140
6.2.2.2.	Synthesis of Manganese oxide-Cadmium oxide Nanocomposites	140
6.2.2.3.	Synthesis of Zinc oxide-Cadmium Oxide Nanocomposites	140
6.2.3.	Synthesis of Metal oxide- Metal oxide Triple Oxides	140
	Semiconductor Nanocomposite	
6.3.	Results and Discussion	141
6.3.1.	Absorption spectroscopy	141
6.3.1.1	Theoretical Background of Measurement of Band Gap	142
6.3.1.2.	Modification of Band Gap of Dual and Triple Oxide	142
	Semiconductors with Variable Composition	
6.3.2.	FTIR-spectroscopy	143
6.3.3	Morphology and Crystallinity of the Mn ₃ O ₄ NPs, CdO NPs, and	144
	Mn ₃ O ₄ -ZnO-CdO NCs	
6.3.4	X-ray Diffraction Pattern of Mn ₃ O ₄ -ZnO-CdO Triple Oxides	145
	Semiconductor Nanocomposites	
6.3.5.	Thermogravimetric Analysis and Energy Disperse X-ray	146
	Diffraction Pattern of Mn ₃ O ₄ -ZnO-CdO Triple Oxides	
	Semiconductor Nanocomposites	
6.3.6.	Photocatalytic Degradation of Evan's Blue by Mn ₃ O ₄ -ZnO-CdO	147
	NCs under Visible Light Irradiation	
6.3.7.	Reusability of the Catalyst	149
6.4.	Conclusion	150
6.5.	References	150

7. Overall	Conclusion and Future Scope of the Work	153
7.1.	Overall Conclusion	153
7.2.	Future Scope of the Work	156

Preface

The aim of this work is to exploit the unique physicochemical properties of manganese oxide and their composites molecules and other different semiconductor material near various sizes and shapes of metal nanostructures Metallic particles in the nanometer size regime display widely interesting size-dependent optical, electronic, magnetic, catalytic and chemical properties. With such applications on the horizon, new synthetic routes for quickly and reliably rendering magnetic nanoparticle surfaces have become an increasingly important focus. Different shape and size-selective change of physicochemical properties of manganese oxides and their composites. For this purpose, the present Ph. D. thesis entitled "Synthesis, Characterization and Physicochemical Properties of Size and Shape-Selective Manganese Oxides and their Composites" has been chosen. This thesis includes the synthesis of different manganese oxides (like Mn₃O₄, Mn₂O₃ and MnO) nanoparticles of various sizes and shapes (spherical, nanorods, microdendelions shape nanostructures), formation of noble metal-manganese oxide nanocomposites (like Au-Mn₃O₄, Ag-Mn₃O₄) and their photophysical properties based on catalysis (both organic and photocatalysis), electrocatalysis and selective sensing measurements and also formation of more interesting system such as dual metal oxides and triple semiconductor nanocomposites. Moreover, size selective manganese oxide nanoparticlessemiconductor assembly and their various physicochemical properties have been studied using microscopic (transmission electron microscopy, scanning electron microscopy) and spectroscopic (UV-visible spectroscopy, diffuse reflectance spectroscopy, Raman spectroscopy, energy dispersive X-ray analysis, Fourier transform infrared spectroscopy, X-ray diffraction, and selected area electron diffraction) techniques. The complete work of the thesis has been divided into seven chapters

Chapter 1

This chapter describes the general introduction about the current literature related to the research work presented on manganese oxide nanomaterials, their composites and physicochemical properties of the nanostructures.

Chapter 2

This chapter presents a brief description about the chemicals and reagents used and various techniques and analytical instruments used for the characterisation for the synthesised manganese oxides and other related materials.

Chapter 3

This chapter describes the synthesis of different shape and size selective manganese oxide nanoparticles using soft-template strategy and synthesized materials used in photocatalysis and selective organic catalytic oxidations reactions. This chapter consists of two sub-sections:

Chapter 4

This chapter describes the synthesis of different shape and size selective goldmanganese oxides and silver-manganese nanocomposites using non-toxic binary solvents mixture as soft-template and synthesized materials used in electrocatalytic water oxidation/oxygen reduction reaction and in sensing of VOCs. This chapter consists of two sub-sections:

Chapter 5

This chapter includes the new types of metal oxides-manganese oxides di-oxides nanocomposites. Here we have synthesized iron oxide-manganese oxide (Fe_3O_4 - Mn_3O_4 NCs) and nickel oxide-manganese oxide (NiO-Mn_3O_4 NCs) nanocomposites by facile hydrothermal treatment. This chapter consists of two sub-sections. In first section we have discussed the synthesized reduced magnetic material (Fe_3O_4 - Mn_3O_4 NCs) are used biological applications and in the other we have discussed the most important part of this thesis, room-temperature, neutral pH water splitting by NiO- Mn_3O_4 NCs.

Chapter 6

In this chapter, a new type of nanocomposites have been synthesized using three different semiconductor materials in a unit system. Typical triple semiconductor nanocomposites here report for first time as best of our knowledge. Here we studied the photocatalysis application and band-gap tenability of synthesized MnO-ZnO-CdO triple semiconductor.

Chapter 7

The important outcomes of the completed research are summarized and the future scopes of the work are mentioned in this chapter.

List of Figures

Fig. 1.1.	Schematic presentation of the density of states with change in the	
	number of atoms in the system	3
Fig. 1.2.	Profile showing the percentage of surface atoms as a function of	
	particle diameter at the nanoscale dimension	4
Fig. 1.3.	Schematic representation of the crystal structure of manganese	
	oxides. (a) Rock salt; (b) spinel (Mn ₃ O ₄); (c) bixbyite (Mn ₂ O ₃);	
	(d) pyrolusite β -MnO ₂ (rutile-type) (note the single chains of	
	edge-sharing octahedra); (e) ramsdellite (diaspore-type) ([MnO ₆]	
	octahedra form infinite double layers); (f) phyllomanganate	
	(birnessite-buserite family of layered MnO ₂). In this idealized	
	representation there are alternate layers of full and empty	
	octahedral sites.	7
Fig. 1.4.	Schematic diagram of band bending after chemisorptions of	
	charged species (here the ionosorption of oxygen) EC, EV, and	
	EF denote the energy of the conduction band, valence band, and	
	the Fermi level, respectively, while Λ_{air} denotes the thickness of	
	the space-charge layer, and eV surface denotes the potential	
	barrier. The conducting electrons are represented by $e^{\scriptscriptstyle -}$ and $+$	
	represents the donor sites	13
Fig. 3.1.	Solid state absorption spectrum and (b) plot of $(\alpha h v)^2$ as a	
	function photon energy of Mn_3O_4 microdandelions in dye-	
	surfactant conjugates	32
Fig. 3.2.	(a-c) Scanning electron microscopic images of Mn ₃ O ₄	
	microdendelions in dye-surfactant assemblies; (d) high resolution	
	TEM, (e) selected area electron diffraction, and (f) electron	
	diffraction X-ray spectrum. Inset in panel a shows the photograph	
	of real dandelions to show the resemblance with the Mn_3O_4	
	microstructures	33
Fig. 3.3.	FTIR spectra of (a) FITC-D 2000S/CTAB and (b) after formation	
	of Mn ₃ O ₄ microdendelions in FITC-D 2000S/CTAB soft template	
	at room temperature	34

Fig. 3.4.	X-ray diffraction patterns of manganese oxide/dye-surfactant	
	hybrid assemblies (a) as-prepared and (b) after calcinations at 500	
	⁰ C for 1 h in argon atmosphere	35
Fig. 3.5.	Thermogravimetric analysis of the Mn ₃ O ₄ microdandelions/dye-	
	surfactant hybrid assemblies as-dried in air	35
Fig. 3.6.	Absorption spectral changes of aqueous solution of alizarin red	
	(2.0 μ M) in the presence of 25 μ g Mn ₃ O ₄ under visible light	
	irradiation. Inset shows the molecular structure of the	
	dye	38
Fig. 3.7.	Plot of $ln(A_0/A)$ as a function of time for the degradation of	
	alizarin red in the absence and presence of Mn ₃ O ₄	
	microdandelions under visible light irradiation	39
Fig. 3.8.	Histogram showing the percentage of the degradation of the dye	
	in each cycle	39
Fig. 3.9.	Solid state absorption spectrum of manganese oxide	
	superstructures in polymer-surfactant conjugates	45
Fig. 3.10.	(a) Scanning electron micrograph, (b) high resolution scanning	
	electron micrograph, (c) transmission electron micrograph, (d)	
	high resolution transmission electron micrograph, (e) selected	
	area electron diffraction pattern, and (e) energy dispersive X-ray	
	analysis of the manganese oxide microrods in polymer-surfactant	
	conjugates	46
Fig. 3.11.	FTIR spectra of (a) polyethylene glycol/sodium dodecyl sulphate	
	conjugates and (b) after formation of Mn_2O_3 nanostructures in	
	PEG/SDS soft templates at room temperature	47
Fig. 3.12.	X-ray diffraction pattern of (a) manganese oxide/polymer-	
	surfactant hybrid assemblies and (b) after calcination of the	
	assemblies at 800 °C in argon atmosphere	48
Fig. 3.13.	Raman spectrum of the manganese oxide/polymer-surfactant	
	hybrid assemblies dried in air	48
Fig. 3.14.	Thermogravimetric analysis of the manganese oxide/polymer-	
	surfactant hybrid assemblies as-dried in air	49
Fig. 3.15.	BET adsoption isotherm for N2 gas-soprtion of the manganese	49

oxide/polymer-surfactant hybrid assemblies dried in air

Fig. 4.1.	Absorption spectra of (a) Au, (b) Mn_3O_4 and (c) Au-Mn_3O_4
	nanoparticles
Fig. 4.2.	FTIR spectra of Mn_3O_4 (a) before and (b) after addition of gold
	nanoparticles
Fig. 4.3.	(a, b, c) Transmission electron micrographs of Au, Mn_3O_4 , and
	Au-Mn ₃ O ₄ nanoparticles respectively; (d) dark field scanning
	tunneling electron micrographs, (e) energy dispersive X-ray, and
	(f) selected area electron diffraction pattern of
	Au
Fig. 4.4.	X-ray diffraction pattern of Au-Mn ₃ O ₄
Fig. 4.5.	Overlaid Nyquist plot $(-Z''vs.Z')$ for 1.0 mM $[Fe(CN)_6]^{3-/4}$ in 0.1
	M PBS (pH 7.5) at bare gold (black), 4-ATP/gold (brown), Au
	NPs/4-ATP/gold (red), Mn ₃ O ₄ NPs/4-ATP/gold (green) and Au-
	Mn ₃ O ₄ NCs/ATP/gold (blue) electrodes, where, anodic current
	amplitude, $E_{\rm ac} = 10 \text{ mV}$ while the frequency varies from 0.01 -
	100000 Hz
Fig. 4.6.	Cyclic voltammograms of water oxidation in presence of 4-
	ATP/gold (red), Au NPs/4-ATP/gold (green), Mn ₃ O ₄ NPs/4-
	ATP/gold (blue) and Au-Mn ₃ O ₄ NCs/4-ATP/gold (black)
	electrodes in PBS at pH~7.5
Fig. 4.7.	Cyclic voltammogram for the water oxidation at Au(10)-Mn ₃ O ₄
	(black), $Au(16)$ - Mn_3O_4 (red) and $Au(25)$ - Mn_3O_4 (green)-
	modified gold electrode in 0.1 M PBS at pH~7.5
Fig. 4.8.	Cyclic voltammograms for oxygen reduction in the presence of 4-
	ATP/gold (blue), Au NPs/4-ATP/gold (green), Mn ₃ O ₄ NPs/4-
	ATP/gold (red) and Au-Mn ₃ O ₄ NCs/ATP/gold (black) electrodes
	in PBS at pH~7.5
Fig. 4.9.	(left) Digital camera photograph showing oxygen gas evolution
	during water oxidation reaction; (right) cyclic voltammogram of
	oxygen reduction of Au-Mn ₃ O ₄ NCs/4ATP/Au electrodes under
	ambient (black) and N2-saturated (red) PBS at
	pH~7.5

Fig. 4.10. (A) Cyclic voltammograms of water oxidation in 0.1 M PBS at pH~5.5 (blue), 6.5 (brown), 7.5 (green), 8.5 (red), 9.5 (black) with Au-Mn₃O₄ modified electrodes; and (B) Profile showing the variation of current and potential as a function of pH..... 76 Fig. 4.11. Solid state absorbance spectra of the Different sets of Mn₃O₄-Ag nanocomposites containing silver nanoparticles of different sizes. Inset shows the digital photograph of Ag NPs@3, Mn₃O₄ NPs, and Mn₃O₄-Ag@3 NCs exhibiting colour change upon formation of the nanocomposites..... 82 Tauc's plot for the estimation of band gap energy of Mn₃O₄ NPs Fig. 4.12. 83 and different sets of Mn₃O₄–Ag nanocomposites..... Fig. 4.13. (a, b, c) Representative transmission electron micrographs of Mn₃O₄ NPs, Ag NPs and Mn₃O₄-Ag@3 NCs; (d) high resolution transmission electron micrograph, (e) selected area electron diffraction pattern, (f) representative field emission scanning electron micrograph, (g) energy dispersive X-ray spectrum and (h) elemental mapping of Mn₃O₄-Ag@3 NCs..... 84 Fig. 4.14. Fourier transform infrared spectrum of (a) Mn₃O₄ NPs and (b) Mn_3O_4 -Ag@3 NCs.... 85 Fig. 4.15. X-ray diffraction pattern of (a) Mn₃O₄ NPs and (b) Mn₃O₄-Ag@3 NCs..... 86 Fig. 4.16. Raman Spectrum of Mn₃O₄–Ag@3 Nanocomposites..... 87 Fig. 4.17. Cyclic voltammograms of Mn₃O₄ NPs, Ag NPs and Mn₃O₄-Ag@3 NCs..... 88 Fig. 4.18. Raman Spectrum of Mn₃O₄–Ag@3 Nanocomposites..... 89 Fig. 4.19. Gas sensing response curves of Mn₃O₄-Ag@1 nanocomposite sensors as a function of time at different operating temperatures. 89 Fig. 4.20. Profiles showing the comparative sensory responses of Mn₃O₄ NPs and five different sets Mn₃O₄-Ag NCs containing silver nanoparticles of five different sizes as a function of operating 90 temperature..... Fig. 4.21. Histogram showing sensitivity of Mn₃O₄-Ag@1 the nanocomposite sensors upon exposure to different volatile 92 organic compounds.

Fig. 5.1.	(a) Absorption spectra in the solid state and (b) plot of $(\alpha hv)^2$ as a	
	function of hv of Fe ₃ O ₄ NPs and Fe ₃ O ₄ –Mn ₃ O ₄ NCs	105
Fig. 5.2.	Fourier transform infrared spectrum of the as-prepared (A) Fe ₃ O ₄	
	NPs and (B) Fe ₃ O ₄ —Mn ₃ O ₄ NCs	106
Fig. 5.3.	Raman spectrum of Fe ₃ O ₄ -Mn ₃ O ₄ nanocomposites	107
Fig. 5.4.	X-ray diffraction patterns of (a) Fe ₃ O ₄ NPs and (b) Fe ₃ O ₄ –Mn ₃ O ₄	
	NCs	108
Fig. 5.5.	(a, b) Representative transmission electron micrographs and (c, d)	
	selected area electron diffraction patterns of Fe ₃ O ₄ nanoparticles	
	and Fe ₃ O ₄ -Mn ₃ O ₄ nanocomposites, respectively; (e) high	
	resolution transmission electron micrograph (f) scanning electron	
	micrograph, (g) energy dispersive X-ray spectrum and (h)	
	elemental mapping of Fe ₃ O ₄ -Mn ₃ O ₄ nanocomposites. Inset in	
	panel b shows the dynamic light scattering spectrum of the	
	Fe ₃ O ₄ –Mn ₃ O ₄ nanocomposites	109
Fig. 5.6.	Thermogravimetric analysis of Fe ₃ O ₄ -Mn ₃ O ₄ nanocomposites as-	
	dried in air	110
Fig. 5.7.	Magnetic hysteresis curves of Fe ₃ O ₄ NPs and Fe ₃ O ₄ Mn ₃ O ₄ NCs.	
	Inset shows the digital camera photographs showing the response	
	of the nanostructures in the presence of a magnetic	
	bar	110
Fig. 5.8.	Histograms showing the in-vitro cytotoxicity studies on the	
	splenic macrophages with Fe ₃ O ₄ -Mn ₃ O ₄ nanocomposites. Inset in	
	the top left panel shows the determination of IC_{50} of the cell	
	viability assay	113
Fig. 5.9.	(A) Solid state absorption spectra and (B) plot of $(\alpha hv)^2$ as a	
	function of hv of Mn ₃ O ₄ NPs and Mn ₃ O ₄ –NiO NCs	118
Fig. 5.10.	Fourier transform infrared spectrum of the as-prepared (a) Mn_3O_4	
	NPs and (b) Mn ₃ O ₄ –NiO NCs	119
Fig. 5.11.	(a, b) Representative transmission electron micrographs and (c, d)	
	selected area electron diffraction patterns of Mn ₃ O ₄ nanoparticles	
	and Mn ₃ O ₄ -NiO nanocomposites, respectively; (e) high	119

resolution transmission electron micrograph (f) scanning electron micrograph, (g) energy dispersive X-ray spectrum and (h) elemental mapping of Mn₃O₄–NiO nanocomposites.

- Fig. 5.12. X-ray diffraction patterns of (a) Mn₃O₄ NPs and (b) Mn₃O₄–NiO NCs.
 Fig. 5.13. TGA weight loss pattern of the as-synthesised Mn₃O₄–NiO NCs.
 Fig. 5.14. Overlaid cyclic voltammogram of 0.5 mM [Fe(CN)₆]^{4–} in 0.1 M PBS at pH~7.0 using bare (red) and Mn₃O₄–NiO modified (blue) gold electrode.
 121
- Fig. 5.16. Overlaid cyclicvoltammogram of Mn₃O₄ (red) and Mn₃O₄–NiO (blue) modified gold electrodes in 0.1 M PBS at pH~7.0..... 122
- Fig. 5.17.Overlaid linear sweep voltammograms obtained from 0.1 M PBS
(pH~7.0) at bare Au (red), Mn₃O₄-Au (green) and Mn₃O₄-NiO-
Au (blue) electrodes.123
- Fig. 5.19.Linear sweep voltammogram obtained at Mn₃O₄-NiO-Auelectrode at 0.1 M acetate buffer solution (pH~7.0)......124
- Fig. 5.20. LSV obtained from Mn₃O₄-NiO-Au electrode with increasing [H₂O] (0.1 to 1.0 M). Inset shows a plot of anodic peak current density *versus* [H₂O].
 125
- Fig. 5.21. Linear sweep voltammogram obtained with Mn₃O₄-NiO-Au electrode in 0.1 M PBS (pH~7.0) at different scan rates. A plot of current density of the nanocomposites as a function of scan rate is shown in the inset.
 125
- Fig. 5.22. Profile showing the variation of anodic peak potential as a 126

function of lnv.

Fig. 5.23.	Cyclic voltammogram of 0.1 M PBS (pH~7.0) at Mn ₃ O ₄ -NiO-	
	Au electrode	126
Fig. 5.24.	Overlaid linear sweep voltammogram derived from Mn ₃ O ₄ -NiO-	
	Au electrode at different pH of 0.1 M PBS (5.0, brown; 6.0 green;	
	7.0, violet, 8.0, blue and 9.0, red) at a scan rate of 100 mV s ⁻¹ .	
	Inset shows the plot of oxidation peak potential as a function of	
	pH	127
Fig. 5.25.	(a) Digital photograph showing the bubbling of oxygen on the	
	electrode surface, (b) Oxygen evolution during the controlled	
	potential electrolysis of water in a gas-tight electrochemical cell	
	containing 0.1 M PBS (pH~7.0) at bare Au (curve c) and Mn_3O_4-	
	NiO-Au electrodes in the presence of sunlight (curve b) and	
	ultraviolet light (curve a) as measured with a fluorescence probe.	
	Dotted line represents the theoretical oxygen evolution with	
	100% efficiency	128
Fig. 5.26.	(left)Controlled potential electrolysis with Mn ₃ O ₄ -NiO modified	
	electrode in 0.1 M PBS (pH~7.0) at +1.5 V versus RHE in the	
	presence of sunlight (blue) and UV light (red).(right)	
	Chronopotentiogram with Mn ₃ O ₄ -NiO modified electrode in 0.1	
	M PBS (pH~7.0) at 2.5 mA cm ⁻²	128
Fig. 5.27.	Overlaid linear sweep voltammograms obtained at Mn ₃ O ₄ -NiO-	
	Au electrode in 0.1 M PBS (pH~7.0) at different time intervals.	
	Insets show (a) the enlarged view and (b) plot of anodic peak	
	current and E _{pa} vs. time	129
Fig. 6.1.	(a) Absorption spectra of individual metal oxides NPs and triple	
	semiconductor NCs. (b) Absorption spectra of dual and triple	
	semiconductor NCs	141
Fig. 6.2.	Fourier tansform infrared spectra of (a) cadmium oxide, (b)	
	manganese oxide and (c) triple semiconductor nanocomposites	143
Fig. 6.3.	Panel a,b and c show the TEM images of Mn ₃ O ₄ , CdO NPs and	
	(Mn ₃ O ₄ -ZnO-CdO) NCs respectively. In panel d,e and f	
	represents the HRTEM images of Mn ₃ O ₄ , CdO NPs and (Mn ₃ O ₄ -	144

ZnO-CdO) NCs respectively. Panel g,h and I represents the SEAD patterns of Mn_3O_4 , CdO nanoparticles and the corresponding (Mn_3O_4 -ZnO-CdO) nanocomposites

- Fig. 6.4.
 X-ray
 diffraction
 pattern
 ofMn₃O₄-ZnO-CdO
 triple

 semiconductor nanocomposites
 146

List of Schemes

Scheme 3.1.	Schematic presentation showing the formation of Mn ₃ O ₄		
	microdandelions at the dye-surfactant assemblies	36	
Scheme 3.2.	Direct synthesis of aldehydes using Mn ₂ O ₃ -microorods catalyst. 5		
Scheme 4.1.	Schematic presentation of the synthesis of $Au-Mn_3O_4$		
	nanoparticles	66	
Scheme 4.2.	Modification of the gold electrode with Au, Mn ₃ O ₄ and Au-		
	Mn ₃ O ₄ nanoparticles	69	
Scheme 4.3.	Schematic presentation of the reduction of the band gap and		
	improved sensory activity in the presence of Mn_3O_4 -Ag		
	nanocomposites	91	
Scheme 5.1.	A schematic presentation for preparation Fe_3O_4 -Mn ₃ O ₄ dual		
	oxide composite	104	
Scheme 5.2.	Schematic presentation showing the conversion of MTT to		
	formazan	111	
Scheme 5.3.	A schematic presentation for preparation Mn ₃ O ₄ -NiO dual		
	oxide nanocomposite	116	
Scheme 6.1.	Reaction schemes for the preparation of triple oxides		
	semiconductor nanocomposites	141	

List of Tables

Table 3.1.	A comparative account of the surface area in the bulk and nano	
	dimension of the Mn_3O_4 microdandelions and some other	
	manganese oxides based catalysts	37
Table 3.2.	A comparative account of the catalytic activity of the visible	
	light photocatalysts for alizarin red degradation	40
Table 3.3.	Development and optimization of Mn ₂ O ₃ -microrods catalyzed	
	oxidation of benzylalcohol to benzaldehyde	51
Table 3.4.	Synthesized aldehydes, sugar aldehyde and ketones	53
Table 4.1.	Cyclic voltammetry data of water oxidation and oxygen	
	reduction in presence of nanomaterials	75
Table 4.2.	A comparative account of the pH condition of the experiment	
	and overpotential of the $Au-Mn_3O_4$ and some other	
	electrocatalysts	76
Table 4.3.	Synthetic conditions for the five different sets of silver	
	nanoparticles	80
Table 5.1.	Comparison of the performances of some related	
	electrocatalysts for water oxidation reaction	130
Table 6.1.	Composition variations and calculated values of band gap (eV)	
	for dual metal oxides and triple semiconductor nanocomposites	
	systems	143

Abbreviations

AFM	Atomic Force Microscopy
aq	Aqueous
4-ATP	4 - Aminothiophenol
BET	Brunauer–Emmett–Teller
CV	Cyclicvoltametry
CdSe	Cadmium Selenide
dil	Dilute
DC	Direct Current
DF-STEM	Dark Field Scanning Tunneling Electron Micrograph
DLS	Dynamic light scattering
EDX	Energy Dispersive X-ray
FTIR	Fourier Transformed Infrared
HRTEM	High Resolution Transmission Electron Microscopy
LSV	Linear Sweep Voltammetry
mg	Miligram
mL	Mililiter
NCs	Nanocomposites / Nanoclusters
nm	Nanometer
NMR	Nuclear Magnetic Resonance
NPs	Nanoparticles
PBS	Phosphate Buffer Saline
PXRD	Powder X-ray Diffractometer
QDs	Quantum Dots
SAED	Selected Area Electron diffraction
SEM	Scanning Electron Microscopy
SPR	Surface Plasmon Resonance
TGA	Thermogravimetric Analysis
TEM	Transmission Electron Microscopy
UV-vis	Ultraviolet and visible
VSM	Vibrating-Sample Magnetometer
XRD	X-ray Diffractometer

Symbols

2D	two dimensional	3D	three dimensional
Å	angstrom	A_e	surface area of ellipsoidal tip-head
c	velocity of light	°C	celsius
cm	centimeter	С	concentration
E_{g}	band gap	eV	electron volt
E_{pc}	cathodic potentials	E _{pa}	anodic potentials
E_{ET}	energy transfer efficiency	E_{F}	Fermi energy level
ΔE_P	potential difference	ϵ_m	real dielectric of the medium
Φ	quantum yield	fcc	face-centered cubic
h	hour	hv	photon energy
i _{pa}	anodic peak current	i_{pc}	cathodic peak current
I_0	intensity of the exciting source	k	solvent interaction energy
	beam		parameter
Κ	kelvin	k_T	energy transfer rate
kDa	kilodalton	kV	kilovolt
K_{SV}	Stern-Volmer constant	K _{cat}	catalytic rate constant
k_F	Fermi wave-vector	λ_{ex}	excitation wavelength
λ_{max}	maximum wavelength	λ_{abs}	maximum absorption wavelength
λ_{em}	maximum emission wavelength	М	molar
mM	millimolar	mL	milliliter
meV	millielectron volt	min	minutes
Ν	numbers of nanoparticles per	nm	nanometer
	milliliter	nM	nanomolar
N_A	Avogadro's number	η	refractive index
μM	micromolar	μΑ	microampere
μ	dipole moment	R	average radii of the particles