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IMPORTANCE OF COMPUTATIONAL CHEMISTRY 
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2.1   Computational chemistry  

Computational chemistry is the combination of all numerical methods which are 

based on molecular mechanics (MM), molecular dynamics (MD), Monte Carlo (MC) 

and quantum chemistry (QC) simulations. These simulations are particularly 

employed for predicting structure, electronic and optical properties of materials.
1-9

 

The basic principle of these simulations is to determine accurately the total energy of 

an investigated system. The methods are briefly discussed in the following sections. 

 

2.1.1   Molecular mechanics  

Molecular mechanics or force field methods use classical laws of physics and offer us 

an extremely powerful tool for analyzing the structural, mechanistic and energetic 

properties of molecules. The negative of the first derivative of the potential energy of 

a particle with respect to displacement along some direction is the force on the 

particle, hence the term force field arises. A force field E (x, y, z, coordinates of 

atoms) can be differentiated to give the force on each atom. In molecular mechanics 

the electronic degrees of freedom of the molecules are ignored and perform 

computations based upon nuclei interactions. However, electronic effects have been 

implicitly included in force fields through parameterizations. These parameterizations 

are not used for caring out for transition states reactions, thereby, hindering the study 

of reaction mechanism using molecular mechanics. The approximations that are 

adopted in molecular mechanical calculation make the computations inexpensive. 

Hence, this method can be applied for systems containing thousands of atoms, such as 

bio-molecules. The existing drawbacks of molecular mechanics are: first, this method 

is appropriate only for those classes of molecules for which the force field is 

parameterized. Secondly, system having prominent electronic effects can’t be applied 

molecular mechanics methods. For example, this method cannot describe the 

chemical reaction involving bond formation or bond breaking. 

 

2.1.2   Quantum mechanics 

2.1.2.1   The Schrödinger equation 

Quantum chemical approach has become important and widespread to determine the 

electronic structure of an atoms or molecules. The electronic structure and total 
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electronic energy of atoms, molecules and crystals can be obtained by solving the 

time-independent, non-relativistic Schrödinger equation. 




EH      (2.1) 

In the wave mechanics formulation, 


H  is the Hamiltonian operator,   is a wave 

function and E  is a scalar value representing the system energy. The Hamilton 

operator of a system is expressed as                             
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The equation (2.2) is the time independent Schrödinger equation, where the first 

quantity on right hand side account for the kinetic energies and the second term 

accounts for the potential energies. The exact solution of Schrödinger equation is not 

possible, even for the smallest systems. Numerous mathematical approximations have 

been applied to find out the solution of Schrödinger equation.  

 

2.1.2.2   Born-Oppenheimer approximation 

The Schrödinger equation can be solved analytically for systems having one electron. 

Noticeably, the solution of this equation becomes increasingly difficult as more 

electrons are present. Consequently, several approximations need to be made to carry 

out calculations on systems containing more than two particles. One of the 

fundamental approximations used in this context is the Born-Oppenheimer 

approximation in which, the motion of electrons and nuclei are separated. 

nuclearelectronictotal HHH      (2.3) 
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The total molecular wave function is simply the product of electronic and nuclear 

wave functions, which results in the simplified Schrödinger equation (2.6). The 

approximation allows us to calculate the wave function for electrons moving in a 

fixed potential field of the nuclei 

nulearelectronictotal      (2.5) 
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electronicelectronicelectronicelectronic EH 
    

(2.6) 

The total energy of a system can now be calculated from the electronic energy and the 

nuclear-nuclear repulsion remains constant for a given geometry. 

 

2.1.2.3   Hartree-Fock method 

Schrödinger equation gives an exact solution for the hydrogen atom. But when atoms 

other than hydrogen are considered, the number of inter-electron repulsion in the 

Hamiltonian will increase, thereby, interpreting the exact solution of the Schrödinger 

equation becomes extremely complicated. Hence, more powerful methods for 

calculating the ground state energy and wave functions of many electron atoms or 

ions are needed. In 1927, the British physicist D. R. Hartree had suggested that the 

wave function of an N-electron atom can be written as the product of N one-electron 

wavefunctions.
10

 The product is typically referred to as Hartree wave function, HP  

)()........()()().......( 321321 NN

HP rrrrrrrr     (2.7) 

Where )( ir  is normalized and mutually orthogonal one-electron wave function.  

But the major shortcomings associated with this wavefunction is that it fails to satisfy 

the antisymmetry principle, which states that a wavefunction describing fermions 

should be antisymmetric with respect to the interchange of any set of space-spin 

coordinates. By space-spin coordinates, we mean that fermions not only have three 

spatial degrees of freedom, but also have an intrinsic spin coordinate,   or  . 

Hartree wave function provided in equation (2.7) is only the product of the N one-

electron spatial wave functions. Thus, in order to improve the wave function we have 

to include both spatial part as well the electron spin part and are defined by equation 

(2.8) 

)()........()()().......,,( 321321 NN

HP rrrrrrrr    (2.8) 

Where                   )( ir  or   )( ir  

The Hartree total wave function given in equation (2.8) does not satisfy the 

antisymmetry principle. The antisymmetry principle can be satisfied by rewriting the 

above functional form with slater determinant as  
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This determinant of spin orbital is so called the slater determinant has a desired effect 

since interchanging positions of two electrons changes its sign. Thus, in Hartree-Fock 

approach, the N-electron wave function is the antisymmetric product of individual 

electron spin-orbital. 

 

2.1.2.4   Density functional theory 

Density functional theory also known as DFT provides an alternative way to solve the 

Schrödinger equation. In recent years, DFT becomes the most successful and 

promising approaches to compute the electronic structure of matter. Applicability of 

DFT ranges from atoms, molecules and solids to nuclei and quantum and classical 

fluids. The original formulation of DFT is that the ground-state electronic energy is 

determined completely by the electron density in the system of non-interacting 

electrons. The origins of DFT are found in the Thomas-Fermi model in 1920s, where 

electronic energy was attempted to be calculated in terms of the electron density.
11

 

Thomas-Fermi model failed to describe molecular bonding, therefore, rendered this 

method impractical for any real system. However, the first real improvement in the 

use of DFT for molecules arose from the two Hohenberg-Kohn theorems, developed 

in 1964.
12

  

 

The first Hohenberg-Kohn theorem 

First theorem states that the external potential  rext


  is a unique functional of  r


 . 

Their theory is found to be different from the traditional quantum chemical methods 

that are based on wavefunctions. In wavefunction based methods, the wavefunction 

governs everything, and the electron density results from it. But, in DFT, one-to-one 

correspondence between the electron density of a system and the energy is exist, that 
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is, there is a map ( )()()( rrrext


  ). The ground-state density )(r


  has 

uniquely determined the external potential  rext


 , the ground-state wave function 

)(  and hence, all the properties of the ground state, for example the kinetic 

energy  sT  the potential energy    and the total energy  E . Now the total 

energy can be written as  

        eesext ETEE     (2.10) 

 eeE  denotes electron-electron interaction term while  extE  is for the nuclei-

electron interaction. The energy expression can be subdivided into two parts: the part 

independent of the system along with external perturbation if any, that is 

    ees ET   which is collectively referred to as Hohenberg-Kohn functional  HKf  

      eesHK ETf     (2.11) 

And the other one which depend on the system, i.e., due to nuclei-electron attraction 

and perturbation,         

  rdrE extext


  )(      (2.12) 

Equation (2.10) can be rewritten as  

    rdrFE extHK


  )(     (2.13) 

If Hohenberg-Kohn functional  HKf  is known explicitly, then the Schrödinger 

equation can be solved exactly for hydrogen atom as well as for gigantic molecules 

such as DNA.  

 

The second Hohenberg-Kohn theorem 

The second Hohenberg-Kohn theorem states that the Hohenberg-Kohn functional 

 HKf , attains its ground state energy 0E  with respect to all allowed densities if and 

only if the input density is the true ground state density, that is  

    rdrFEE extHK


  )(~~~

0
   (2.14) 

The meaning of the equation (2.14) is that for any trial density )(~ r


 , which has 

satisfied the necessary boundary conditions such as 0)(~ r


 , Nrdr ext 


 )(~  and 

which is associated with some external potential ext~ , the energy obtained from the 



 

33 

 

functional of equation (2.13) represents an upper bound to the true ground state 

energy 0E . 

 

Kohn-Sham approach 

In DFT, quantum chemical calculations are performed very conveniently in terms of 

single particle orbitals within the Kohn-Sham formalism.
13

 The Kohn-Sham orbitals 

{ )(ri


 } equation is given as 
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where, r  is the space vector and )(r


  is the external potential, )(r


  is the wave 

function of orbital occupied by each electron, i  be the eigen value corresponding to 

that orbital. Accurate Kohn-Sham orbitals )(ri


  once constructed, the electron 

density )(r


  can be obtained exactly using the following formula by summing over 

all the occupied orbitals: 
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The kinetic, exchange, and correlation energies can be calculated from 
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The construction of the KS orbital is a necessary step, but the determination of the KS 

potential )(r


  corresponding to accurate target density )(r


  turns out to be a 

difficult part in the construction of the accurate KS orbital. To obtain an expression 

for the Kohn-Sham potential )(r


 , the Hohenberg-Kohn functional for the interacting 

system is partitioned as follows: 
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Here, the first second and third term is kinetic energy, coulomb interactions between 

core charges, and exchange-correlation, respectively. Therefore, the Kohn-Sham 

potential )(r


  can be subdivided into the following parts: 

)()()()( xcext
H

rvrvrvrv


    (2.22) 

Where, ext  is the external potential which is the Coulomb field of the nuclei, H  is 

the Hartree potential, which is the classical Coulomb repulsion between the electrons 

and the xc  is the potentials corresponding to the exchange-correlation energy which 

is the only unknown part. It is very important to realize that if the exact forms of 

)(rxc


  is known, the Kohn-Sham strategy will lead to the exact potential )(r


  since 

ext  is already known and H  calculation is straight forward for any given density. 

Therefore the accurate determination of the Kohn-Sham potential from the accurate 

electron density )(r


  allows us to judge approximations to the energy functional 

 xcE  by comparing the approximate model potential with the accurate one.
14,15

 In 

DFT, exact force of xc potential is not available, hence to solve the Kohn-Sham 

equation an approximation for the xc potential )(rxc


 , which should contain all the 

many-body effects, is required. Many different approximations have been proposed 

for practical application, among which the most important approximations are the 

local density approximation (LDA).
16

 In LDA, the quantum system under study is 

assumed to be based upon uniform distribution of electron gas. According to 

Hohenberg and Kohn, if the density )(r


  varies extremely slowly with r , then 

 xcE  can be written as  

    rdrrE LDA
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Where  )(rLDA

xc


  is the exchange-correlation energy per electron of a homogenous 

electron gas with electron density )(r


 . Although LDA might not be appropriate for 

real atoms and molecules but has been remarkably successful for some systems. 
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In order to account for the non-homogeneity of electrons, in few years back, the 

generalized gradient approximations (GGA) have been developed.
17

 In this approach, 

the electron density )(r


  at a particular point 𝑟 is supplemented with the gradient of 

density, )(r


 . Equation of the GGA can be written as 

   drrrrE GGA

xc

GGA

xc )()()(        (2.24) 

It has been observed that the accurate estimation of correlation energy in GGA 

receives considerable attention although the chemical significances of gradient 

corrections for correlation are relatively small as compared to their exchange 

counterparts.
18

 The most popular correlation functionals are the LYP (Lee, Yang, and 

Parr) including both local and non-local terms
19

, the P86 (Perdew 1986) functional
20

 

and the PW91 (Perdew and Wang 1991) functional.
21

  

 

2.1.2.5   DFT based reactivity descriptors 

Density functional theory (DFT) provides a framework in order to describe reactions 

in terms of changing number of electrons (N) or changing external potential, )(r


  due 

to nuclei.   

Chemical potential ( ) can be defined as the first derivative of the energy ( E  ) with 

respect to the number of electrons ( ) at constant external potential, )(r
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Here   equals the negative of electronegativity defined by Iczkowski and 

Margrave
22

, since it determines the energy change upon changing the total number of 

electrons. Parr and Pearson defined global hardness as the corresponding second 

derivative of energy.
23
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Chemical hardness ( ) and chemical potential (  ) can also be calculated using a 

finite difference approximation in terms of   and 
24
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2

EAIP


     
(2.28) 

Where IP  and EA are the first vertical ionization potential and electron affinity, 

respectively, for a chemical system. 

According to Koopman’s approximation
25 

IP  and EA can be defined in terms of the 

energies of highest occupied molecular orbital (
E ) and the lowest unoccupied 

molecular orbital ( LUE ). 

HOMOEIP        (2.29) 

LUMOEEA        (2.30) 

And therefore   and   can be expressed as. 
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Parr and his coworkers expressed
26

 global electrophilicity ( ) as 
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The global reactivity descriptors cannot be used for studying the site-selectivity of a 

chemical system, therefore, appropriate local reactivity descriptors need to be defined. 

Parr and Yang
27

 defined Fukui function )(rf


 as the mixed second derivative of the 

energy of the system with respect to the number of electrons (N) at constant external 

potential )(r
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Where )(r


  is the electron density. 

To describe site selectivity or reactivity of an atom in a molecule, the Fukui function 

values around each atomic site should be condensed into a single value, which can be 

achieved by electronic population analysis. Hence, for an atom k in a molecule, there 

are three different types of condensed Fukui function such as 


kf , 


kf  and 
0

kf , 

respectively, depending upon the type of electron transfer. 
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By using an atomic charge partitioning scheme, the definition of condensed Fukui 

function for k atom undergoing nucleophilic attack, electrophilic attack and free 

radical attack are 

For nulcleophilic attack      )()1( NNf kkk  

   
(2.35) 

For electrophilic attack       )1()(  NNf kkk 
    

(2.36) 

For free radical attack        
2

)1()1(0 
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NN
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k


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Where )(Nk , )1( Nk and )1( Nk  are the electron densities of the N, N+1 and 

N-1 electron systems, respectively. 

The condensed form of Fukui functions introduced by Yang and Mortier
28

 are as 

follows: 

For nulcleophilic attack    )()1( NqNqf kkk 

    
(2.38) 

For electrophilic attack    )1()(  NqNqf kkk     
(2.39) 

For free radical attack    
2

)1()1(0 
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NqNq
f kk

k

    
(2.40) 

kq  defines the populations of atom k in the molecule.  

 

2.1.3   Quantum mechanics/molecular mechanics method (QM/MM) 

It is well known that molecular mechanics (MM) is not used for studding the chemical 

reactions as it does not able to calculate or simulate the breaking or formation of 

chemical bonds. Therefore, quantum mechanical (QM) simulation has been 

considered for studying the interaction of biomolecules with small drug molecules. 

Quantum mechanical simulations can perfectly describe the hydrogen, ionic and 

covalent binding interactions. QM methods are based on solving the Schrödinger 

equation, thereby taking directly into consideration the electronic structure of a 

molecule and therefore allow access to chemical interactions. Unfortunately, quantum 

mechanical methods of high-quality are computationally very expensive and cannot 

be used directly for studying large molecules. In order to overcome such limitation, 

Morokuma and co-workers have developed a hybrid method (ONIOM) based on 

combination of several theoretical approaches for large biomolecular systems.
31-34 

This method has been implemented in Gaussian09 program as ONIOM (our Own N-



 

38 

 

layer Integrated molecular Orbital molecular Mechanics) which is a powerful and 

systematic method which divides the system into several layers and have been 

suggested at various levels.
35-37

 According to Morokuma et al., the full molecular 

geometry of the system which include all atoms is referred to as “real” geometry and 

is treated with a “low”-level of theory. Chemically most important (core) region of the 

system, referred to as the “model” geometry are treated using both the “low”-level 

and “high”-level of theory. A three layer model introduces an “intermediate” model 

geometry which is treated with a “medium” level of theory. 

In the two-layer ONIOM method, the real system energy is obtained from three 

independent calculations:  

low

systemlmode

low

systemreal

high

systemmodel

2 EEEEONIOM 
   

(2.41) 

The ONIOM method uses an extrapolation to calculate the total energy. Beginning 

with low

systemelEmod , the extrapolation to the high level calculation 

( low

systemel

high

systemel EE modmod  ) and the extrapolation to the real system 

( low

systemel

low

systemreal EE mod ) have been assumed to give an estimate for high

realsystemE . 

In case of the three-layered ONIOM methods, the ONIOM energy can be stated by 

following equation. 

low

systemmiddle
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systemreal

medium

systemel

medium

systemmiddle

high

systemel

ONIOM EEEEEE  modmod

3  (2.42) 

The real system contains all the atoms and calculation is performed at MM level, 

while the model system contains the part of the system that is treated at QM level. 

Both QM and MM calculations need to be carried out for the model system. ONIOM 

method has become very successful and extensively used in studies of DNA, protein 

interaction. 

 

2.1.4   Molecular docking 

The application of molecular modeling methods to study the formation of 

intermolecular complexes has become the subject of research interest for the last three 

decades. In the field of molecular modeling, the process of searching for a small 

molecule that is able to fit both geometrically and energetically to the binding site of a 

target macromolecule is called molecular docking (Fig.2.1).
38
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Fig.2.1   Small molecule fits to a large macromolecule
39 

 

2.1.4.1   Mechanics of docking 

The two different components associated with the success of molecular docking are 

search algorithm and scoring function. The process of searching whether a given 

conformation and orientation of a ligand fits the active site comes under search 

algorithm. Search algorithm falls into two main categories: systematic and stochastic. 

In systematic algorithm, the outcomes of the search is deterministic and sample the 

search space at predefined intervals. Stochastic search methods have make random 

changes to the state variables until it met the user defined termination, hence, the 

outcome of the search varies. Systematic search algorithms are commonly used in 

rigid protein–rigid protein docking whereas stochastic search algorithms are more 

suitable for flexible ligand–protein docking.
40

 Programs like DOT
41

, GRAMM
42,43

 

and ZDOCK
44

 used systematic search algorithms. Search algorithms can also be 

classified based on how broadly they have explored the search space, as either local or 

global. Local search methods search for the nearest or local minimum energy in the 

current conformation, whereas global methods tend to search the best or global 

minimum energy within the defined search space. There is another search method so 

called hybrid global–local search method which have been shown to perform even 

better than global methods alone, being more efficient and able to find lower 

energies.
45

 AutoDock 4 uses two local search methods (Solis and Wets
46

 and Pattern 

Search
47

), two global search methods (Monte Carlo (MC) simulated annealing (SA)
 48
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and the genetic algorithm (GA)
 49-51

 and one hybrid global–local search method (the 

Lamarckian GA (LGA)).
45

  

The purpose of the scoring procedure is to identify the correct binding pose by its 

lowest energy value and the ranking of protein-ligand complexes according to their 

binding affinities.
52

 Scoring function usually involves simple energy calculations such 

as electrostatic, van der Waals, ligand strain etc. and more accurately estimated the 

free energy of binding ( G ). Scoring functions are based on empirical, knowledge or 

molecular mechanics force fields.
53

 In addition, some docking strategies have used 

one scoring function at the time of docking and a different one after docking to rerank 

the results; such retrospective scoring, however, doesn’t affect the efficiency and 

accuracy of the primary scoring function.
 54

 The AutoDock scoring function is 

generally based on the molecular mechanics force field AMBER.
55 

 

2.1.4.2   Application of molecular docking 

Molecular docking has a wide variety of uses and applications in drug discovery 

process which include structure–activity studies, drug discovery (lead optimization), 

virtual screening (hit identification), bioremediation, prediction of KA (biological 

activity), binding site identification (blind docking), protein-protein interaction or 

protein-nucleic acid interaction and enzyme reaction mechanism. The main goal of 

molecular docking is to predict the biological activity of a given ligand. A binding 

interaction between a drug molecule and an enzyme may result in activation or 

inhibition of the enzyme function, hence it is widely accepted that drug activity is 

obtained through the molecular docking method. 

 

2.1.4.3   Summary 

Molecular docking is a key tool which analyzes the structural molecular biology and 

computer-assisted drug design. Predicting the predominant binding modes of a ligand 

in the binding site of a protein of known three-dimensional structure is the main goal 

of ligand–protein docking. A successful docking method search high-dimensional 

spaces effectively and use a scoring function which ranks the docking candidates 

correctly. Docking can be used to perform virtual screening on large libraries of 
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compounds, rank the results and proposed structural hypotheses of how the ligands 

inhibit the target one.  
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