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Chapter 5

STUDY OF VIBRATIONAL SPECTRA OF BENZENE DERIVATIVES

(FLUORO BENZENE, CgHsF, DEUTERATED BENZENE CsDg, AND MONO DEUTERIUM

5.1

SUBSTITUTED BENZENE CgHsD)

The Algebraic Hamiltonian :
According to the general algebraic description for one dimensional degrees
of freedom, a dynamically symmetric Hamiltonian operator for n interacting
(not necessarily equivalent) oscillators of a polyatomic molecule in terms of
Morse anharmonic oscillators by introducing the U(2) algebra for each
bonds can be written as (Sen et al, 2011; 2012; 2013) :
H=E0+Zn:A[Ci+iAUCU+Zn:/1UMy, (5.1)
i=1 i<j i<j
where C;, C; and Mj; are the invariant algebraic operators. In the local basis
the operators C;are the diagonal matrix with eigenvalues
<M’V1|C/|Ni>vt>:_4(szi_vzz) (5.2)
The couplings between the bonds are introduced by the operators C; and
M;;, are called Majorana and Casimir operators respectively. The role of the
Majorana operators Mj is to introduce off-diagonal couplings between pairs
of local modes. In the simplest case of equivalent interacting bonds, the
Majorana operator naturally leads to a solution for symmetrized coupled
modes, in which the invariance of the Hamiltonian operator, under bond

exchange, is explicitly taken into account. A rather appealing feature of this
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algebraic model is that such a “symmetrizing” property of the Majorana
operator, actually quite a trivial for one for two equal bonds, can readily be
extended to any molecular geometry, even a very complex one. The key
point is that the basic information characterizing the specific molecular
geometry can easily be incorporated by introducing proper linear
combinations for Majorana operators.

In purely local limit of N oscillators, these oscillators are somehow co-
related with each other through the C; operators, which account for

(diagonal) cross-anharmonicities, represented by the following equation:

c C.
Cij:Ci_Nij Vl"'# > (5.3)

i J
where Nj; = N; + N;

Furthermore, following eq. (5.3), it should be noted that one basically
subtracts from C; those terms arising from uncoupled single-oscillator
contribution. In the special case of a pair of equivalent oscillators i and j(N;
= N)), the above equation can be replaced by the following matrix elements,

<vivj‘qj‘vivj>=—4(v[—vj)2 (5.4)
i.e., the matrix elements do not depend on Ni(N;). As a result, C; will
account for different contribution throughout different polyads and within
the same polyad; the most important aspect of Cjis the dependence of its
matrix elements on the product vyv;.

The quantum numbers v; correspond to the number of quanta in

each oscillator while Vis the total vibrational quantum number given by

V=>v. (5.5)
i=1

For a particular polyad, the total vibrational quantum number is always
conserved.
In Eq. (5.1), the invariant Casimir (C;) and Majorana (M) operators have the

following matrix elements (Sen et al., 2013):
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NN, (Gl NN v )= =4[ 49 )N+ V) - (v, +)) ]

P2Vt o

N.,v; Nj,vj

70

N.v:N, v> vl.Nj+vle.—2v,.vj

y’ 270 Jaj

(5.6)

P2 o

<
<
<N VLN LY, =1 M| NN v ) ==, 0+ DN, =)V, =y, +1)
(N, =L N v, + 1M | NN v ) ==\ + DN, =9 (N, =y, +1)

IR R R
Thus, the eigenvalues of the Hamiltonian can be easily evaluated and
provide a description of n coupled anharmonic vibrators.

5.2 Structure of Three Derivatives of the Benzene Molecule:

F

H D H
(a) (b) ()
Fig. 5.1 : (a) Partially F-substituted Benzene (Fluorobenzene, C¢HsF) (b) Deuterated

Benzene, CgDg (c) Mono deuterium substituted Benzene, CgHsD

5.3 Results and Discussions:
In general, the eigenvalues problem for H must be solved analytically with
spectrum generating algebra or dynamical algebra which describes, within
a certain approximation, realistic rotation-vibration spectra in one (stretch)
and three dimension (stretch and bend). As the dynamical algebra can be
incorporated by the language of Lie Algebra and thus after the introduction
of U(2) Lie Algebra to describe n stretching bonds, two possible chains of

molecular dynamical groups of fluorobenzene are as (Sen et al., 2011, 2013;

Oss, 1996):
U'QQ)®.... RU"(2)20'2)®...... ®0"(2) > 0(2), (5.7)
U'Q)®.... R®U"2) U)o 0(2). (5.8)

which correspond to local and normal coupling, respectively. The coupling

to final O(2) group in the first chain is carried out through different
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intermediate couplings 07(2) and the second chain arises from all the
possible couplings of U'(2) groups to obtain a total U(2) group, which in turn
contains the final O(2) group.

To find the vibrational frequencies of fluorobenzene, deuterated
and mono deuterium substituted benzene, we use the algebraic
parameters A, A, A, N and N, to study the vibrational spectra of the
molecules where N is the vibron number. After considering the common
coupled and uncoupled bond-bond interaction in the molecular
configuration in case of the molecules and also considering the Majorana
couplings, on the basis of the symmetry of the molecules, the numbers of
algebraic parameters are reduced to four for Fluorobenzene and to five for
other two. In this regard, one should note that this is the unique beauty of
the algebraic model where one needs only a fewer parameters to describe
the vibrational spectra of a molecule with a good accuracy.

The values of Vibron number (N) can be determined by the

relation

N, = —k(k=12..) (5.9)

Where w,and w,x, are the spectroscopic constants.
For the molecules in normal mode, we can have the values of w,
and w,x, from each bond from the study of Nakamoto (Nakamoto, 1997)

and that of Huber and Herzberg (Huber and Herzberg, 1979). Using the

values of w, and w,x, for each bond, we can have the initial guess for the

value of the vibron number N. it may be noted here that in the algebraic
approach, there is provision to change (not more than +20%) the value of N
to get better accuracy. This is equivalent to change the single-bond
anharmonicity according to the specific molecular environment, in which it
can be slightly different.

To obtain a starting guess for the parameter A we use the
expression for the single-oscillator normal mode which is given as

E(v=1)=—4A(N-1). (5.10)
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Using eq. (5.10), A can be obtained as

d-__ B (5.11)
AN-1)

To obtain the initial guess for A (for the Fluorobenzene), whose role is to
split the initially degenerate local modes, placed here at the common value
E. Following the simple Hamiltonian matrix structure (5.12) leads to finding

out the corresponding algebraic parameters

—4A(N-1) —44 Q2N-1)+AN —-AN
AN —4A(N—1)—4A/(2N—1)+AN (5.12)
From the above matrix structure, we easily find that
A= M (5.13)
2N

and for the hyperfine splitting of the spectrum, the corresponding algebraic
parameter is

Ez — E1
6N

(5.14)

To achieve the better results, a numerical fitting procedure (in a least-
square sense) is required to obtain the parameters 4, 4,4 and 1’, as given
by equations (5.11), (5.13) and (5.14). Initial guess for A may be taken as
zero.For C¢Dg and CgHsD, one has to obtain an initial guess for the
parameters 1 and A’ of the Majorana operators, the role of which is to
split the degeneracies of local modes and the values of the parameters can

be calculated by considering the following matrix structure of the

molecules.
—4 A(N-1)-44' (2N-1) B B B
+3(A+A)N AN AN AN
B —4A(N-1)-4A'(2N-1) B B
AN +3(A+A )N AN AN
B B —4A(N-1)-44 (2N-1) B
AN AN +3(A+A )N AN
B B B —4A(N-1)-44 (2N-1)
AN AN AN +3(A+A )N

To obtain an initial guess for the parameters, A and I’ we comprise the

following relations from above matrix equation (Oss, 1996).
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;FEB_E' (5.15)
2N
and
_Eh (5.16)
6N

By using a numerical fitting procedure (in a least square sense) one can

adjust the values of the parameters N, A, A/, Aand A'to fit the

experimental result.

The fitting algebraic parameters used in the study of vibrational

spectra of Fluorobenzene is given in table 5.1 and those of deuterated an

mono deuterium substituted benzene are given in table 5.2, where tables

5.3, 5.4, 5.5 show the calculated frequencies of the three derivatives of

benzene with the corresponding deviations considering the different

theoretical and experimental values.

Table 5.1: Fitting algebraic parameters of Fluorobenzene (CgH;sF):

Vibron Number

Algebraic parameters (cm™)

N A A 1%
50.00 -30.43 0.376 0.05
Table 5.2: Fitting Algebraic parameters of CH, CC and CD bonds of
CGDG and C5H5D .
Bonds CH CcC (o]p]
Vibron Number 53 137 59
ACH =-1.93 Acc =-2.38 ACD =-1.49
Algebraic Aoy = - 8.2986 Aec=-0.1056 | Alep=-0.1932
Parameters
(Cm-l) A=1.87 A=3.21 A=2.00
N =0.61 N =0.81 N =0.43
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Table 5.3 : Calculated and experimental normal fundamental
frequencies (cm™) of Fluorobenzene (CsHsF):
Normal (S o Ve
orma cotoniet | . v, -y
fundamental al., 1995, (Singha ?t al., 2014' - Lobs _call « 100%
Polycyclic Aromatic | Vobs ™ Vea Vb
level J.Chem.Phys. Compound 34, 1.8)
103, 897) p ’
Vi 3047.9 3048.17 -0.27 0.008%
Vs 3060.3 3058.15 2.15 0.071%
V3 3061.3 3062.25 -0.95 0.031%
Vg 3067.3 3067.10 0.20 0.001%
Vs 3069.6 3068.45 1.15 0.037%
- o)
Vg 3070.6 3071.33 0.73 0.023%
vy 3076.0 3075.24 0.76 0.024%
Vg 3079.1 3078.20 0.90 0.029%
Vg 3079.4 3079.56 -0.16 0.005%
Vio 3080.1 3081.69 -1.59 0.051%
Vi1 3084.9 3083.17 1.73 0.056%
V12 3090.3 3089.58 -0.72 0.023%
Vi3 3094.0 3094.55 —0.55 0.017%
Vig 3104.0 3102.85 1.15 0.037%
Vis 3109.6 3108.22 1.38 0.44%
Vi 3111.0 3112.36 -1.36 0.043%
Vi7 3112.1 3113.20 -1.10 0.035%

A(r.m.s.)=1.126 cm™
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Table 5.4 : Calculated and observed fundamental frequencies (cm™ ) of C¢Dg
vobs S vCI‘;I
Mode (siebert et | | /mioijt
(Wilson | Symmetry al., 1984 at., A IR VR Vi Mode Character
Quantum
No.) J.Chem.Phys | =
. 81,1115) 16)

1 Aq 945.0 947.2 -2.2 Breathing

3 A, 1059.0 1061.8 -2.8 | C-C-H (D) Wagg

12 B, 970.0 978.0 8o |CCCTrigonal
Bend

14 B, 1282.0 1282.4 -04 C-C Stretch

15 B, 824.0 528.8 1.8 | ©CH (D) Trigonal
Wagg

6 E» 580.0 581.2 -1.2 C-C-CBend

8 E, 1557.0 1556.0 1.0 C-C Stretch

9 E» 869.0 878.8 -9.8 C-C-H (D) Wagg

18 E, 814.0 810.4 3.6 C-C-H (D) Wagg

19 Eq 1333.0 1344.0 -11.0 C-C Stretch

11 A, 496.0 497.4 -1.4 | C-C-H (D) Wagg

4 B, 599.0 596.6 -2.4 C-C-C Puckering

5 B 829.0 830.3 1.3 | &CH (D) Trigonal
Wagg

10 E; 660.0 665.0 -5.0 C-C-H (D) Wagg

16 E» 345.0 345.2 -0.2 C-C-CBend

17 E, 787.0 779.6 7.4 | C-C-H (D) Wagg

A(r.m.s.)=5.011cm™
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Table 5.5 : Calculated and observed fundamental frequencies (cm™ ) of CgHsD
‘70b5 ‘Z’al
Mode (Snelletal., | (Singhaetal.,
(Wilson | Symmetry 1997, 2014, Vope ™ Veur Mode Character
No.) Chem.Phys. Quantum
225,107) Matter 3, 1-6)
16 As 401.0 402.4 1.4 | CCC out of plane
bending
11 B, 596.7 596.4 0.3 |CM out of plane
bending
6 As 600.0 600.4 04 |CCC  inplane
bending
4 B, 692.6 693.8 -1.2 C-C-C puckering
10 A, 834.4 837.9 05 |CM out of plane
bending
17 B, 919.7 916.3 34 |CH out of plane
bending
1 A, 971.8 966.7 5.1 Ring breathing
5 B 983.0 985.3 3 |CH out of plane
bending
12 Ar 992.1 10031 | -110 |CCC  trigonal
bending
18 Ay 1028.6 1025.5 31 C-C Stretching
15 B, 1163.3 1165.5 22 |CH in plane
bending
9 Ar 1176.1 1176.7 06 |CM in plane
bending
14 B, 1292.6 1285.9 6.7 C-C stretching
3 B, 1329.7 1325.0 a7 |CH inplane
bending
19 Ar 1470.7 1473.5 g |CH in plane
bending
8 Ay 1599.7 1599.5 0.2 C-C stretching
13 Aq 2271.9 2270.5 1.4 C-D stretching
2 Aq 3053.8 3057.8 -4.0 C-H stretching
7 Aq 3071.8 3069.2 2.6 C-H stretching
20 Ay 3090.8 3091.4 -0.6 C-H stretching

A(r.m.s.)=3.759 cm™
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Analysis of spectra:

Here we present the study of the vibrational spectra of benzene
derivatives, fluorobenzene, deuterated and mono deuterium substituted
benzene using Lie-algebraic method. In this chapter, we have reported the
RMS deviations for fluorobenzene, deuterated and mono deuterium
substituted benzene for several fundamental frequencies, which are 1.126
ecm™ and 3.759 cm™ respectively. These are in good agreement with the

observed data.




