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Chapter 2

FORMALISM OF LIE ALGEBRAIC
THEORY OF POLYMATIC MOLECULES

2.1. One dimensional Algebraic Model for Polyatomic Molecules:
The Lie algebraic methods have been useful in the study of problems in
physics at the end of the 19" century and especially after the development
of quantum mechanics in the last part of the 20" century. In the last few
years, Lie algebraic method has been introduced as a computational tool
for the analysis and interpretation of experimental rovibrational spectra of
small and medium-size molecules (lachello, 1981; lachello and Levine,
1982). This method is based on the idea of dynamic symmetry, which, in
turn, is expressed through the language of Lie algebras. By applying
algebraic techniques, one obtains an effective Hamiltonian operator that
conveniently describes the ro-vibrational degrees of freedom of a physical
system. Within this framework, any specific mechanism relevant to the
correct characterization of the molecular dynamics and spectroscopy can
be accounted for. The algebraic methods are formulated in such a way
that they contain the same physical information of both ab initio theories
(based on the solution of the SchrOdinger equation) and of semiempirical
approaches (making use of phenomenological expansions in powers of

appropriate quantum numbers). However, by employing the powerful




FORMALISM OF LIE ALGEBRAIC | 67

method of group theory, the results can be obtained in a more rapid and
straightforward way.

lachello, Arima (lachello and Arima, 1974; Arima and lachello,
1975) and Wulfman (Wulfman, 1973; Levine et al., 1979) have played a
significant role in the algebraic approach to molecules. Wulfman is the
pioneer who reported on the algebraic approach to molecules (the
approach to the Morse oscillator) in 1979. Later, in 1981 lachello used Lie
algebraic methods in a systematic study of the spectra of molecules (the
vibron model). This introduction was based on the second quantization of
the Schrodinger equation with a three-dimensional Morse potential and
described the rotation-vibration spectra of diatomic molecules and
polyatomic molecules (Roosmalen, lachello, Levine and Dieperink, 1983b;
Roosmalen, Benjamin and Levine, 1984). Using Lie algebraic method,
Sarkar and Karumuri (Sarkar et al, 2006; Karumuri, 2012; Karumuri et al,
2010a; Choudhury et al, 2010) reported better results for the vibrational
energy levels of HCN, HCCF, HCCD, SnBrs, Cu[TPP], Cu[TPP]* than those
reported earlier. Moreover, The U(2) algebraic model was also particularly
successful in explaining separately the stretching and bending vibrations of
polyatomic molecules such as octahedral, benzene and pyrrole-like
molecules (Lubich and Oss, 1996; Ping, 1997). As such, the approach is
particularly appropriate for many challenges of modern spectroscopy,
hence we used the U(2) algebraic model to study some of the vibrational
spectra of benzene, monomer and dimer of benzene and two of its
derivatives and at the same time try to confirm that the U(2) Algebraic
model stands itself as an alternative approach to the traditional Dunham
expansion and potential approach for polyatomic molecules. In potential
approach, the interpretation of experimental data by solving Schrédinger
equation with interatomic potentials becomes increasingly difficult as the
number of atoms in the molecule increases, whereas, in Dunham
expansion no Hamiltonian operator is available and in this expansion for

large polyatomic molecules, one needs a large number of parameters to
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obtain by fitting large experimental data base, which is not always

available. The Dunham expansion can be readily obtained as

E(u)—a)(u+lj—a)x(u+lj2 2.1
- e 2 e”Ve 2 ( . )

where w. and w. x . are the spectroscopic constants. This above expansion
does not contain any information about the wave function of individual
states. Thus, the matrix elements of operators cannot be calculated
directly.

To construct the Hamiltonian operator in the algebraic framework
in n dimensional harmonic oscillator one has to replace the usual ; and p;
space coordinates with differential quantum operators x;, -iho/0x; (i =
1. , n). This corresponds to the algebraic realization which is obtained in
terms of a second quantization by replacing the differential space-
momentum operators with creation and annihilation operators. For a
harmonic oscillator the followings are the rules of replacement

a:xl.+6/8xl. aT:xi—é/Gxi 22)
i \/5 > i \/5 .

By virtue of the quantum nature, both the operators x; and p; satisfy
certain commutation relations, which contain within themselves the
specific aspects of the physical interaction between particles, lead to a set
of precise commutation relations of the operators a; and al.T.

The following expression representing the Hamiltonian operator,
in terms of the operators a;and a;

H=N+ g , where the number operator N=Zn: aal (2.3)
i=1

Considering the larger degeneracy and dynamical groups, the algebraic
Hamiltonian operator can be written in terms of n? annihilation—creation

operators ai and aj.' (i,j=1, ........, n). Thus it can be easily shown that,

[Ifl, df&j} =0 (2.4)
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These commutation relations are an unequivocal sign of symmetry for the

Hamiltonian operator, H. Such symmetry is made clear through a detailed
study of group theoretical properties of the bilinear forms af aj. In proper

expansion over bilinear forms of (boson) creation and annihilation

operators, the Hamiltonian operator can still be represented. The general

rule is that one has to introduce a set of (n+1)? boson operators b; and b; (4,
j=1, ..., n+1) satisfying the commutation relations

[b.6]]=6,. |[b.b,]=[6].b]]=0 (2.5)
The Algebraic (second-quantized) version Hamiltonian operator now can

be written as

H=E,+Y ebb,+ > f.bblbb +.. (2.6)
i.Jj

T
This expression includes terms up to two body interactions. The algebraic
Hamiltonian (Eq. (2.3)) of the (n-dimensional) harmonic oscillator is, of
course a special case of Eq. (2.6). One observes that it is possible to
arrange the above Hamiltonian in the framework of a dynamical algebra

by explicitly introducing the bilinear products
—pt P
G,=bb;, i,j=1,.... n+1 (2.7)

Where the operators G satisfy the commutation relations
[Gjj, Gnk] = Gibjn — Gpibi and hence representing the unitary algebra
U(n+1). Now it is possible to write the Hamiltonian operator in terms of

the generators

H=E+Y G, + Y finGuGy+-. (2.8)
i,j

i,j,hk
In this situation it is worthy to notice that the algebraic Hamiltonian (Eq.
(2.6)) expressed in terms of elements of U(n+1), is completely general and
holds for any n-dimensional problem. This means that the dynamical group
for any three dimensional problem is U(4), while for any one-dimensional
situation the dynamical group is U(2). In Eqg. (2.8) the basic idea is to
choose the parameters ey fin, ... in such a way that only certain

operators of the sub-algebras of the dynamical algebras are taken into
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account. As a matter of fact, if one includes in this expansion only the
invariant or Casimir operators of the sub-algebras, the Hamiltonian

operator can be written as
H=E,+AC+AC' +A4'C" +...... (2.9)
In which the C’s are invariant operators of the sub-algebras G’,G”, ....... of

the dynamical algebra G. Starting from U(2), we introduces two dynamical

symmetries, (a) and (b) corresponding to the chains

(@) UQR)DU() (2.10)
b)) UR)D0(2) (2.11)
Chain (a) is characterized by the following algebraic ket:
UR)oU(l
@> ()> wheren=NN-1,....0 (2.12)
N n

By virtue of the boson character of the algebraic realization of U(2), one
just has to use symmetric irreducible representations of the algebra.
Similarly, the chain (b) is characterized by the following algebraic ket:

U)o 0Q2)
N m

> wherem= =N, +N-2 .. +lor0 (2.13)

Based on both the chains, the dynamical symmetric Hamiltonian operator

has the following form:
H'“ = E, +eCy), +e,Ch, (2.14)
H® = Ey+ ACH)y + A4,C5% (2.15)
The eigenvalues of those Hamiltonian operator using chain (a) and chain
(b) are
E“(n)=E,+en+en’, wheren=N,N-1,..0 (2.16)
E®(m)=E,+ Am+ A,m*, wherem=+N,*N-2,__.+1or 0 (2.17)
Interesting situation arises when we chose A; =0, A=A, # 0 in Egs. (2.15)
and (2.17), it is now possible to put the spectrum in a one-to-one
correspondence with the bound state spectrum of the one dimensional

Morse potential. This can be done by choosing in Eq. (2.17) only the

positive branch of the quantum number m. Correspondingly we obtain,
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E®(m)=E,+Am*, wherem=N,N-2,.10r 0 (2.18)
Now, one can easily recognize the Morse spectrum by introducing the

usual vibrational quantum number

z)=u =0,1,....,E0r N-1
2 2

(N even or odd) (2.19)

Using the function of v, Eq. (2.18) becomes
E®(0)=E,+ AN —2v)* =¢,—4Au(N —v),where ¢, = E, + AN*  (2.20)
Comparing Eq. (2.20) directly with the Dunham expansion (Eq. (2.1)), we

obtain,

2 4 X

e

eo:&(l_ﬁ), P SV (2.21)
2

We generalize the U(n+1) algebra for N interacting oscillators, the
corresponding product is

U,(2Q)®U,2)®...0U,(2) (2.22)

Consequently the algebraic Hamiltonian for N uncoupled anharmonic

oscillators, based on the U(2) > O(2) dynamic symmetry, will be given by

N
Hunmupled = Z Ai C(()lz()2) (2 . 23)
i=1

We also introduce the algebraic local basis

|ml,m2,....mn>, m =N,N,-2,..., i=1L...N (2.24)
or, equivalently, the local vibrational basis

|0,0,,.00,), 0,=0,1,2,.., i=1..,N (2.25)

In the above basis, the eigenvalues can be computed according to Eq.

(2.20)

E

uncoupled

N

(Ve ) ==4>_ AU,(N, -0) (2.26)
i=1

The local basis as given by Eq. (2.25) can be arranged in polyads,

characterized by a well defined total vibrational number Z?ZIVI = p . This

means that within the same polyads i.e., for given p, single basis states are

expressed in terms of integers partitions of p in N parts. We now have to
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account for some type of interaction among the local modes. In the N
oscillator case, we expect to deal with coupling terms involving pairs of
oscillators; this is equivalent to considering algebraic lattices, starting from

the product as shown in Eq. (2.22), of the following types,

0,(2)®0,(2)®....80,(2)
0,(2)®0,(2)®..80,(2)

0;(2)®0,(2)®..©0,(2) (2.27)

O (2)®0,(2)®..80,,(2)
and
U,2)®U,2)®....0U,(2)

U,2)®U,(2)®..0U,(2)

U,2)®U,(2)®..0U,(2)
(2.28)

U,2)®U,2)®..0U, ,(2)
Thus it leads to the following Hamiltonian operator for N interacting
oscillators,

N N N

H=E,+ > ACS, + 2 A,Co0 + > M, (2.29)

i=1 i<j=1 i=1
Consider now a molecule with n bonds. In the algebraic model, here each
bond is replaced by the corresponding U(2) algebra. Our concentration lies
on the explicit problem of the construction of a straightforward
generalization of the Hamiltonian operator for the benzene and its
derivatives. According to the general algebraic description for one-
dimensional degrees of freedom, a dynamically-symmetric Hamiltonian
operator for N interacting (not necessarily equivalent) oscillators can be
written as (Sen et.al., 2011; 2012)

H=E, +iAl.Cl. +iAl.jCl.j +iil.jMy. (2.30)
i=1

i<j i<j
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In this expression, one finds three different classes of effective
contributions. The first one, Z; A.C, is devoted to the description of n

independent, anharmonic sequences of vibrational levels (associated with

N independent, local oscillator) in terms of the operators C; . The second

n . eae . . ae
one, Z[<j147jqj leads to cross-anharmonicities between pairs of distinct

local oscillators in terms of the operators Cj. The third one,

Z _/Il.le.j describes anharmonic, non-diagonal interactions involving

i<j
pairs of local oscillators in terms of the operators Mj. The C, C; operators
are invariant (Casimir) operators of certain Lie algebras, while the Mj; are
invariant (Majorana) operators associated with coupling schemes,
involving algebras, arising from a systematic study of the algebraic
formulation of the one-dimensional model for N interacting oscillators.
Our work relies on the local (uncoupled oscillators) vibrational basis, which
can be written as,

|v> = |vlv2v3....vn> (2.31)
In which the aforementioned operators have the following matrix
elements,
(v|C,|v) ==4v,(N, -V,

<v|Ct.j|v>=—4(vl.+vj)(Nl.+Nj -V, —V;)
<v'|M,.j | VN, +v,N, =2vv)A, A,
(v
(v

)=
2.32
"M (vy=—| (v, +1)(N,=v.)v.(N,—v. +1 szé,_,é', ( )
| > [(! )( i 1) /( J J )j| V= O+
)=

y

'|M._

y

(v, +1)(N,=v,)v.(N,—v. +1 mxé‘,. o, _
L+ D), v v (N v+ 1) 75,6,

Here, in particular, the above expressions depend on the numbers N;
popularly known as Vibron numbers (vibration rotation quantum number).
Such numbers have to be seen as predetermined parameters of well-
defined physical meaning, as they relate to the intrinsic anharmonicity of a

single, uncoupled oscillator through the simple relation.
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2.2. Hamiltonian for Bending Vibration:
We emphasize once more that the quantization scheme of bending
vibrations in U(2) is rather different from U(4) and implies a complete
separation between rotations and vibrations. If this separation applies,
one can quantize each bending oscillator i by means of an algebra U;(2) as

in Equation (2.13). The Poschl-Teller Hamiltonian is

P’ D
H(P,s)=—"*——>5—— (2.33)
2u  cosh™(as)

Where we have absorbed the A (A -1) part into D, and can be written, in

the algebraic approach, as

H, =¢, +AC, (2.34)
This Hamiltonian is identical to that of stretching vibration [Eq. (2.30)]. The
only difference is that the coefficients A; in front of C; are related to the
parameters of the potential, D and a, in a way that is different for Morse

and Poschl-Teller potentials. The energy eigenvalues of uncoupled P&schl-

Teller oscillators are, given by
E=Y ¢ =E—Y 44 (Ny,-v}) (2.35)

One can then proceed to couple the oscillators as done previously and

repeat the same treatment.

2.3. Local to Normal-mode Transition and the Locality Parameter:
The local-to-normal transition is governed by the dimensionless locality
parameter (§). The local-to-normal transition can be studied for polyatomic

molecules, for which the Hamiltonian is,

H=H""+,M,=AC +A4,C;+ M, (2.36)
For these molecules, the locality parameters are

&=/ m)tan™'[84, /(4 + Aij) i, j=1,2.3,.... (2.37)

corresponding to the two bonds. A global locality parameter for XYZ

molecules can be defined as the geometric mean.
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E=(&5 D" (238)

With this definition, due to Child and Halonen, local-mode molecules are

near to the & =0 limit, normal mode molecules have & - 1.




