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Chapter 1

INTRODUCTION

General:

The Spectroscopy is a branch of Physics which deals with the interaction of
electromagnetic radiation with matter. It is presently going through an
exciting time of renewed interest, which is being fueled by the rapid
development of sophisticated experimental approaches. Recent
development of powerful lasers to create complex excitations, thus allows
one to study the highly excited levels with unprecedented resolution. New
detecting techniques are constantly being developed with sensitivities far
exceeding the limits of detectors which are not available a few years ago.
The recent increasing interest in the role of anharmonicities and reasonance
couplings, made unavoidable by the study of higher lying rovibrational states
and the experimental reality of avoiding inhomogeneous broadening makes
the entire domain of direct interest to spectroscopists. To understand and
analyze a physical system in its befitting manner molecular spectroscopy is
an area of active interest from many stand points. Having its numerous
connections with many other branches, molecular spectroscopy has been
playing an important role both in experimental and theoretical approaches.

At present the structure and dynamics of highly excited vibrational states of
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polyatomic molecules is a subject of considerable interest. In studies of
intra-molecular dynamics, benzene occupies an interesting position as text
book example (Herzberg, 1945; Wilson, Decius and Cross, 1955; Page, Shen
and Lee, 1987) of a molecule of intermediate size. The Benzene is a highly
symmetric molecule and its overtone spectra and some of its isotopic
derivatives have been at the starting point of the interesting discussion of
the intra-molecular vibrational redistribution processes as visible in
vibrational spectra. Benzene has also been considered as a prototype
molecule for harmonic force field calculation (Bray, Berry, 1979; Page, Shen
and Lee, 1988; Wilson, 1934) local mode theory (Rump and Mecke, 1939;
Henry and Siebrand, 1968; Hayward, Henry and Siebrand, 1973)
radiationless transitions, high resolution electronic spectroscopy (Collomon,
Dunn and Mills, 1966; Schubert, Riedle, Neusser, 1989; Bruno, Riedle and
Neusser, 1986) and high resolution infrared and Raman spectroscopy
(Jensen and Brodersen, 1979; Hollinger and Welsh, 1978).

The present study leads to the vibrational analysis of Benzene,
monomer and dimer of Benzene and three of its derivatives using Lie
Algebraic approach which strongly relies on the traditional unitary group
theory and hence examine the interactions that account for the Casimir and
Majorana couplings and their consequences for fundamental and overtone
spectra and dynamics. Our analysis follows the traditional approach of the
Vibrational mode description of Wilson used in many papers on Benzene
spectra.

Isotopically leveling Benzene causes the Benzene (/) modes to lose

this identity due to alteration of the kinetic energy term in the Hamiltonian.
A quantitative description of these modes can be obtained by expressing the
Vibrational Hamiltonian of the heavy leveled Benzene. This expression
involves diagonal and off-diagonal terms by Casimir and Majorana operators
which provide a quantitative description of the normal modes of Benzene

molecules and its derivatives.
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1.2  Survey of literature:

During the last two decades, continuous interest in the spectroscopy of C-H
stretch vibrations of polyatomic molecule has resulted in the accumulation of
information concerning the dynamics of intra-molecular vibrational energy
redistribution processes. These investigations concern a large number of
molecules. Among them Benzene and its derivatives have been extensively
studied and continued to arouse considerable interest (Bassi, Corbo, Lubich and
Scotoni, 1997).

Developments of new modern spectroscopic techniques give the
provisions of obtaining information on molecular Vibrational overtones and
combination states (Choudhury et al, 2010). In view of this experimental
technique one needs theoretical models to interpret experimental data.
Traditional approaches by solving Schrédinger equation with interatomic
potentials and Dunham’s expansion (Dunham, 1932) becomes difficult to apply
in the case of polyatomic molecules. To overcome the difficulties arised in
analyzing the vibrational spectra by traditional methods, a third approach i.e.
Vibron Model (the Algebraic Model) based on Lie Algebra (lachello, 1981) was
built in the second half of the 20™ century. This new model based on one
dimensional Vibron Model appears to describe the molecular spectra
successfully even in complex situations.

The essence of the algebraic method can be traced to the Heisenberg’s
formulation of quantum mechanics (Heisenberg, 1925). The use of Lie Algebra
as a tool to systematically investigate physical systems (the so called spectrum
generating algebra) did not however developed fully until 1970’s when it was
introduced in a systematic fashion by lachello, F and Arima, A in the study of
spectra of atomic nuclei (interacting Boson model) (lachello, 1974; Arima and
lachello, 1975; lachello and Arima, 1987). Soon afterwards the algebraic method
was extended to rotation-vibration spectra of polyatomic molecules (Van
Roosmelen, Dieperink and lachello, 1982). The basic idea in this new approach is
that of expanding the Hamiltonian and the other operators in terms of set of

Boson creation and annihilation operators characterizing the local/normal
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modes of the system. Contrary to the potential (differential/wave formulation)
approach, all manipulations here are algebraic.

The recent advent of high resolution spectroscopy, such as molecular-
beam spectroscopy has led to a much more detailed understanding of Benzene
overtone transitions, demonstrating the existence of well structured absorbtion
spectra at least in the case of low order overtones (Page, Shen and Lee, 1988;
Scotoni, Boschetti, Oberhofer and Bassi, 1991; Scotoni, Leonardi and Bassi,
1991). Algebraic models have shown to constitute a powerful tool for
addressing the spectroscopic problems (lachello and Levine, 1994; lachello and
Oss, 1992; lachello and Oss, 1993). The algebraic model in its one-dimensional
realization was used to analyze portions of vibration spectra of Benzene and
some of its isotopic substituted forms (Bassi, Menegotti, Oss, Scotoni and
lachello, 1993). Several algebraic models with the help of Lie Algebra have been
reported by different workers (Ogilvie, 1978; Halonen and Child, 1982; lachello,
Oss and Lemus, 1991; lachello and Oss, 1990; Van Roosmelen, Benjamin and
Levine, 1984; Michelot and Moret-Bailly, 1987; Leroy and Michelot, 1992; Lemus
and Frank, 1994), but the interpretation of the spectra requires further
improvement. The main advantage of the algebraic method is that
anharmonicities in the energy spectra are put in from the very beginning and
anharmonicities in the interactions between different modes are introduced
automatically since they are already contained in the matrix elements of the
step operators.

Since anharmonicities play crucial role in Vibrational spectroscopy, it is
here that the algebraic methods have found their most useful applications and
hence we have chosen the problem.

In this work, we present the Lie Algebraic method for determining the
vibrational spectra of Benzene and its derivatives. The advantage of the
algebraic approach is that the entire class of molecules can be described by a
generic form of algebraic Hamiltonian where only the parameters a different for

different molecules.
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There is a considerable current research interest in the study of higher
vibrational states of polyatomic molecules. The appearance of new
experimental techniques to detect the higher vibrational excitation in
polyatomic molecules requires theoretical methods for their interpretation. In
integro differential techniques, the molecular Hamiltonian is parameterized in
terms of internal co-ordinates (Wilson, Decious and Cross, 1955). The potential
is modeled in terms of force field constant either through complex calculations
involving molecular electronic energy of several configurations (Raynes,
Lezzeretti, Zanasi, Sadlej and Fowler, 1987) or experimentally by fitting of
spectroscopic data (Gray, Robiette, 1979). In case of polyatomic molecules the
knowledge of force field is poor due to large number of force constants. The
potential may be modeled by representing the anaharmonicity of bonds by a
sum of anharmonic Hamiltonians, among these, Morse potential is commonly
used. The first step towards the algebraic approach was given by lachello, Levine
and co-workers with the introduction of Vibron model where rotation-vibration
spectra of molecules was described by U(4) algebra. In 1984, Van Roosmelen et
al proposed an algebraic model to describe the stretching vibrational modes of
ABA molecules (Van Roosmelen, Benjamin and Levine, 1984). This model is
based on the isomorphism between one dimensional Morse potential and SU
(2) algebra and corresponds to the algebraic version of the coupled Morse
oscillator method developed by Halonen and Child. The use of SU (2) model was
not developed further to include in case of complex molecules until 1991 when
lachello and Oss proposed its extension to describe stretching vibrational modes
of polyatomic molecules, such as Benzene like systems [lachello and Oss,
1991(b)]. The algebraic approach of vibrational stretching mode in polyatomic
molecules was also proposed by Moret, Michelot, Bailly and Leroy (Michelot,
Moret and Bailly, 1987; Leroy and Michelot, 1992) using unitary group U (n) with
(n-1) approach. An important step in the development of algebraic SU(2) model
was recent extension to incorporate bending modes.

In the past few years the results of Vibration spectra of HCN, OCS HCCF,
HCCD, OCS and HCP(Sarkar et al., 2006 ; 2007; 2008; 2009), CCl,, SnBr4, CF4 and
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Propadiene (Choudhury et al, 2008;,2009), Ni(OEP), Ni(TPP), Ni
Porphyrin(Karumuri et al., 2008; 2009) have been reported by using algebraic
approach with a few algebraic parameters. Also, vibrational spectra of
molecules such as tri-fluoro benzonitrile, trifluoro-aniline and trifluoro benzoic
acid dimmers were studied with a variety of experimental tools such as FTIR,IR,
Raman spectra, DFT and SQMFF (Mukherjee et al., 2008; 2009; 2010).

Although extensive studies on these systems have clarified several
aspects, many other aspects require further theoretical explanations and there
is enormous scope for improving the algebraic method for determining

vibrational energy levels of Benzene and its derivatives.

Dynamics of Molecules and Normal Modes of Vibration:

In @ molecule consisting of N atoms, there are 3N degrees of freedom or modes
of vibration. The complete nuclear motion of N-atomic molecules can be
described by 3N parameters. The translations of a molecule can always be
described by three parameters and the rotation of any linear molecule can be
described by two parameters and that of a non-linear molecule by three
parameters. This means that there are always three translational and three (for
linear molecules two) rotational degrees of freedom. The remaining 3N-6 (for
the linear case 3N-5) degrees of freedom account for the vibrational motion of
the molecule. They give the number of normal vibrations.

The translational and rotational degrees of freedom which do not change
the relative positions of the atoms in the molecule are often called non-genuine
modes. The remaining 3N-6 (or 3N-5) degrees of freedom are called genuine
modes. In a crystal, all the 3N degrees of freedom of the molecule become
oscillatory. The oscillations arising from translations and rotations of the
molecule are known as translatory and liberatory lattice vibrations respectively.
These vibrations are often referred to as external vibrations to distinguish them
from the so called internal vibrations of the individual molecules. In General, all
these vibrations in a crystal are governed by inter- and intra- molecular

interactions. Although the dynamics of a molecule or a solid appears to be
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complex it may be described in terms of simple modes of motion, known as
normal modes.
Normal Modes of Vibration:
The random motion of molecular vibrations can always be decomposed into the
sum of relatively simple components called normal modes of vibration. Each of
the normal modes is associated with a certain frequency and thus, for a normal
mode every atom of the molecule moves with the same frequency and in phase.
There are three characteristics of normal vibrations which are as follows:

i.  Their number,

ii. Their symmetry,

ii. Their types.

i. Their number:
Since vibration is only one of the possible forms of motion it has to be
separated from the others, translation and rotation. For an N-atomic
molecules there are always three translational and three (for linear
molecule two) rotational degrees of freedom. The remaining 3N-6 (for
the linear case 3N-5) degrees of freedom account for the Vibrational

motion of the molecule. These give the number of normal vibrations.

ii. Their symmetry:
The close relationship between symmetry and vibration is expressed
by the following rule:
Each normal mode operation forms a basis for an irreducible
representation of the point group of the molecule. From the
symmetry group of the molecule, the symmetry species of the normal

modes can be determined without any additional information.

iii. Their types:
The normal modes can usually, though not always, be associated with

a certain kind of motion. Those connected mainly with the changes in
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bond lengths are the stretching modes and those with the changes of
bond angles are the deformation. These deformation modes may be
mainly either in-plane and out of plane. The simplest deformation

mode is the bending modes.

Molecular Spectra and Vibrational Spectroscopy:

Molecular spectroscopy deals with the interaction of electromagnetic
radiation with molecules. This results in transitions between rotational and
vibrational energy levels in addition to electronic transitions. As a result, the
spectra of molecules are much more complicated than those of atoms.
Current interest in molecular spectroscopy is very great because numbers of
known molecules are extremely large as compared with free atoms. As a
result of the interaction of electromagnetic radiation with the molecules,
electromagnetic radiation characteristics of the interacting system may be
absorbed or emitted. In such a case, the experimental data consists of the
nature (frequency or wavelength) and the amount (intensity) of the
characteristic radiation absorbed or emitted. In spectroscopy, we correlate
these data with the molecular and electronic structure of the substance and
with intra-molecular and intermolecular interactions. Amplitude and
periodicity are the two properties by which an electromagnetic radiation is
characterized. The periodicity of an electromagnetic radiation is defined in
terms of wavelength, wave number or frequency of the radiation. The
wavelength (A) is defined as the distance between any two consecutive
points of the electromagnetic wave having same phase. We often
characterize the electromagnetic radiation by the wave number (v ) which is
defined as the number of waves contained per unit length, usually one
centimeter. Dimension for wave number is reciprocal centimeter (cm™).
The relation between wavelength and wave number is given by v = 1/A. It is
known to us that all radiations travel uniformly with the velocity of light in
vacuum (c) and the c¢/\ is termed as the frequency (v ) of the radiation. The

frequency of a radiation is expressed as the number of waves that pass a
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particular point per unit time (second). Thus, both the wave number and
frequency are directly proportional to the energy of the radiation. As the
name implies, an electromagnetic radiation has both an electric field (E) and
a magnetic field (H) associated with it. Both E and H oscillate in a periodic
manner (sinusoidally) at mutually perpendicular directions. All transverse
directions for the electric and magnetic fields are equally represented in
natural light. However, the electric vector is confined to a particular plane in

case of a plane polarized light.

Elements of spectroscopy:
Any spectroscopic technique could be considered under the following heads:

i.  Radiation that interacts with the matter.

ii. Energy levels that effect transitions among different energy levels.

iii. Absorption (or emission) bands obtained as a result of these transitions.
The position, band width, number and intensity of the absorption (or
emission) bands may be correlated with the molecular and electronic
structure and bonding. By virtue of its different kinds of motion and intra-
molecular interactions, an isolated molecule in space has various forms of
energy. The molecule possesses translational energy by virtue of the motion
of the molecule as a whole. The molecule possesses rotational energy due to
bodily rotation of the molecule about an axis passing through the centre of
gravity of the molecule. It may possess Vibrational energy due to periodic
displacement of its atoms from their equilibrium positions. The molecule
also may possess electronic energy since the electrons associated with each
atom and bonds are in constant motion. In addition to these energies, the
molecule further may possess nuclear energy and energy due to nuclear and
electron spins. Having these much of information, as a first approximation,
one can now express the total energy of a molecule as the sum of the

constituent energies, i.e.,

Etotal :Etrans+Erol+Evib+Eel (11)
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We assume that the various types of energy associated with different
motions of the molecule are independent of one another. It may be noted
that a molecule can have many levels of these different energies. Absorption
of a finite amount of energy, can take a molecule from one energy level to a
higher energy level. It is known to us that there is a very big difference in
mass between the electron and the nucleus. Due to this reason, it is
permissible as a very good approximation, to regard the respective motions
(of the electron and the nucleus) as mechanically separable. This
approximation, as we know, is termed as the Born-Oppenheimer
approximation (Banwell, 1992; Sathyanarayana, 2000). Born-Oppenheimer
approximation tells us that in practice, we need not consider electrons
explicitly in the treatment of molecular vibrations. Of course, one must note
here that the presence of electrons does make itself felt in the dependence
of the force constants on the electronic structure. For an electronic
transition, the time required is about 10'155, on the other hand for a
vibrational transition, the time required is about 10™3s. From this data it is
very much clear that the electronic transitions are about 107 times faster
than the vibrational transitions.

The vibrational motion interacts with the rotational motion. These rotation-
vibration interactions are however, generally very weak. In a typical
rotational transition the energy involved is about 10° times smaller in
magnitude than in a typical vibrational transition. The separation of
rotational motions from vibrational motions thus represents a good
approximation for vibrations of free molecules. For a rotational transition
the time required (about 10™%) is higher than for a typical vibrational
transition (103s). Another important point is to be noted here that the
energy due to nuclear and electron spins is negligible. It is now known to us
that a system will continue to vibrate in exactly the same way irrespective of
whether it is simultaneously undergoing translational motion uniformly
through space in any direction. Translational motion is thus separable from

the vibrational and other kinds of motion. And hence reasonably it’s a good
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approximation to consider the vibrational motions of polyatomic molecules
independently of other types of motion. Now we consider two energy states

of a system, let us say two vibrational energy levels labeled as E, and E,

(Figure. 1.1). Here the subscripts 1 and 2 which distinguish the levels are
referred to as ‘quantum numbers’. The expressions we use to define the
energy levels will involve one or more quantum numbers. The transition

which takes the system from the lower level E, to the higher level, E; can
occur provided an appropriate amount of energy AE = E, -E, is absorbed by

the system. In this context also one knows that if the system is already at the
higher energy level E; by emission of energy AE, a transition to the lower

energy level E,can take place. In this process, the frequency of the

electromagnetic radiation absorbed (or emitted) is given by the Planck’s

equation,
AE = hv
AE (1.2)
= v=—
h
2 A A
Energy Absorption E,-E,= AE=hv Emission
A\ 4 v

Fig. 1.1: Typical Transition

Equation (1.2) represents the basic equation of all spectroscopic studies.

From this equation we see that a molecule in level E, by absorbing radiation
of frequency, v =AE/hcan occupy the energy level E, . If we use a detector

to analyze the radiation it will reveal that the intensity of the beam has

decreased after its interaction with the molecule. In case a radiation beam
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containing a range of frequencies are used, only the radiation of
frequency,v=AE/h would decrease in intensity and the intensity of the
radiation of other frequencies would remain undiminished. It is thus clear
that in absorption spectroscopy, one observes what frequencies of radiation
are absorbed from the incident radiation as it passes through the sample.
Thus one may have a plot of the intensity of the radiation absorbed against
the frequency of the radiation, which is nothing but the absorption
spectrum. Definitely there must be some mechanism by which the
interaction between the incident electromagnetic radiation and the
molecule takes place leading to the absorption of energy by the molecule
producing changes in the nuclear, molecular or electronic energy. One may
think that the interaction occurs through the electric or magnetic field
associated with the electromagnetic radiation with appropriate electric or
magnetic fields produced by changes taking place in the molecule. No
absorption of radiation can occur, if there is no interaction between the
molecule and the radiation. In this regard one should note that whether the
interaction of the electromagnetic radiation with the system occurs or not is
determined by the ‘selection rules’. And thus this restriction on the
appearance or otherwise of the absorption bands may give valuable
information about the structure of the molecule under examination. It is
already mentioned earlier that the frequency of the radiation absorbed or
emitted depends on the energy difference (AE) between the two levels
involved in the transition and this energy difference is different for
rotational, vibrational, electronic, etc. energies. Consequently, the
corresponding spectra occur in different regions of the electromagnetic
spectrum. For the following, we discuss on the applications of vibrational

spectroscopy.

Applications of vibrational spectroscopy:
Vibrational spectroscopy can provide the dynamic picture of a molecule.

Vibrational spectroscopy is important principally because it is a fast
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technique. Vibrational spectroscopy may be applied to many substances
such as solid, as crystals or powder; liquids, solutions, melt; gases, films and
adsorbed species. Due to this reason vibrational spectroscopy has very wide
applications. The bandwidth, position, number and intensity of the
absorption bands may be correlated with the electronic and molecular
structure of the system. For the elucidation of molecular structure,
vibrational spectroscopy may be considered as a valuable tool. Vibrational
spectroscopy provides us important information about the intermolecular
forces in condensed phase, the intra-molecular forces acting between the
atoms in a molecule and the nature of the chemical bond. One should note
here that the goal of high resolution molecular spectroscopy is the
determination of molecular geometry and the potential energy function. To
characterize and identify a molecule, vibrational spectra can be utilized
directly and simply as molecular “fingerprints”. Due to this excellent ability
of vibrational spectroscopy, we apply it in the study of simple inorganic, co-
ordination and organic compounds. Also one must not forget that
vibrational spectroscopy has contributed significantly to the growth of other
areas like polymer science, catalysis, fast reaction dynamics, charge-transfer

complexes, and nano material studies.

Principles of Vibrational Spectroscopy:
Conventional approach:
The spectroscopy of diatomic molecules (Herzberg, 1950) serves as a
paradigm for the study of polyatomic molecules.

To have a simple understanding here first we discuss the basic
principles of vibrational spectroscopy in relation to diatomic molecules and
then extend the concepts developed, to polyatomic molecules as in the case

of conventional approach.
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1.6 Diatomic Molecules:
Harmonic oscillator:
We may compare the chemical bond between the atoms A and B to a spring
in a diatomic molecule, A-B. To make the case more transparent, the ball
and spring model of a diatomic vibrator is shown in Figure. 1.2. We assume
that the spring obeys Hooke’s law i.e., the force exerted by the spring on the
particle is proportional to the displacement from the equilibrium position
(7). Now from Hooke’s law we may have the relation between the restoring
force (F) and the displacement q (from r,to 7, + q) as
= —kqg (1.3)
here the proportionality constant ‘k’ is called the force constant. As
molecular Vibrational amplitudes are small, here the simple harmonic
approximation is generally a good one. We give the potential energy (V) as
v =—[Fdq
_ lqu (1.4)
2
It is clear that the Eq. (1.4) relating potential energy to the displacement
represents a parabola which is symmetrical about the equilibrium bond

length, 7,. Newton’s Second law gives us the familiar equation of a simple

harmonic motion. According to classical mechanics the equation of motion is

2
mid _
dt

—kg (1.5)

Equation (1.5) has a general solution

q =acos22xv,(t—1t,) (1.6)

here a and ¢, are constants v,= (1/27) <fk/m is the fundamental

frequency of the oscillator. We can write the total energy E as

1
E=—kg* 1.7
> q (1.7)

From Eq. (1.7), we see that the vibrational energy of the nuclei depends only

on the force constant k and the displacement g. Hence apparently any
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energy value is allowed. This property that any positive energy value is

allowed is the distinguishing mark of a classical harmonic oscillator.

Fig. 1.2: Diatomic oscillator: Ball and Spring Model.

It is known to us that the time — independent Schrédinger wave equation for
a one — dimensional harmonic oscillator such as a particle of mass m
executing simple harmonic vibration about the point x = 0 is given by
2
dy
2
dx

Here E is the total Vibrational energy and x is the displacement. Now, using

8 2
+ 7; SUE-V ) =0 (1.8)

Eg. (1.4) in Eq. (1.8), we have the equation as

d*y  87°m 1
+ EF——kx)yw =0 (1.9)
dx® W’ ( 2 W

We can now re-arrange the Eq. (1.9) such that it can be recognized as the

Hermite differential equation. We know that the Hermite differential
equation possesses solutions only for certain discrete values of its parameter.
Applying the Schrédinger equation we are thus lead to the result that the

energy of a harmonic oscillator is allowed to have only the values given by,
— =
Ev=(V+;)hv=hcv(v+2) (Vincem 1) (1.10)

characterized by the vibrational guantum numbersv (v=0, 1, 2, .....). The Eq.
(1.10) makes us clear that the quantum mechanical harmonic oscillator can
have the energy only in positive half-integral multiples of hv. This gives
discrete vibrational energy levels since all other conceivable energy values
are not allowed. Hence a series of equally spaced and never ending
vibrational levels are predicted and the molecule cannot dissociate. It is
important to note that the lowest energy of a quantum-mechanical
harmonic oscillator is (1/2) hv. We refer it as the zero point energy and it

has its consequence in the Heisenberg uncertainty principle. Thus we see
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that the energy levels of a quantum mechanical harmonic oscillator are
equally spaced, the energy intervals between any two adjacent states being
hv (Figure. 1.3).

Selection rules:

Absorption of infrared radiation by a molecule results to the infrared
absorption spectrum. Here the molecule undergoes a transition from one
Vibrational energy state to another. Whether the absorption of radiation (by

the molecules) can take place or not is determined by the selection rules.

energy - [cm'I] —

Iinternuclear Distance ——»

Fig. 1.3: The allowed Vibrational energy levels and transitions between
them for a diatomic molecules undergoing simple harmonic
motion. The energy interval between any two adjacent states

hereishv =hw

It is obvious that the field produced by the dipole oscillator (i.e. a vibrating
molecule) consists of statistically fluctuating electric and magnetic dipole
components mainly in the plane normal to the dipole axis and plane
polarized in the direction of that axis. We may thus consider the vibrating
molecule as producing a stationary alternating electric field whose
magnitude changes periodically with a frequency equal to that of the
vibrational frequency. The stationary alternating electric field (equation 1.8)

produced by the vibrating molecule, interacts with the moving electric field
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of the electromagnetic radiation. In case the diatomic molecule is
homopolar, the stretching (or contraction) of the bond between the two
atoms does not lead to any change in dipole moment and hence no
fluctuating dipolar electric field is produced. Under such circumstances no
interaction can take place with the electromagnetic radiation. On the other
hand, for a heteroatomic molecule A-B, the electric dipole moment
oscillates with the vibration frequency and hence radiation of this frequency
can be absorbed. In this regard, it may be noted here that the energy
absorbed must be such that the molecule would just exactly reach a higher
allowed vibrational energy level.

This is equivalent to say that the radiation frequency must be identical
to the frequency of the molecular vibration. The arrows in Figure.1.3
represent the transitions between adjacent levels, 0 - 1, 1 = 2, etc.
Generally, the higher Vibrational level is denoted by v and the lower level by
v”. It should be noted here that if the frequency of the radiation is not equal
to the Vibrational frequency of the molecule, consideration of the
interaction of the changing dipole moment and the moving alternating
electric field shows that such an instantaneous interaction, will eventually be
cancelled by one of exactly opposite phase. In a polyatomic molecule, the
dipole moment change during a particular vibration may be dictated by the
symmetry of the molecular vibration and hence this selection rule is often
referred to as the symmetry selection rule (or gross selection rule). So far we
have considered the transitions between adjacent levels. It may be noted
that the transitions between nonadjacent levels are also energetically
possible. The results of the quantum theory however, impose a restriction
that the only allowed transitions for a harmonic oscillator are those between
adjacent levels, that is,Av = + 1. Often we refer this condition as the
oscillator (or specific) selection rule. Using the Maxwell-Boltzmann
distribution law, the number of molecules in the first excited state (v' =1)
relative to the number of molecules in the ground Vibrational state (v" =0)

may be given by the following relationship:
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M exol - D) |- [ TAE N o[ Y
No—exp{ T } exp( kT) exp(ij (1.12)

here AE is the energy difference between the two states, V,, is the

frequency in ecm™ of the excited Vibrational state, T is the temperature in
Kelvin, k is the Boltzmann constant and h the Planck’s constant. We know that
at room temperature, kT corresponds to 200 cm ™. Now, if AE is much larger

than kT, the number of molecules ( N, ) with energy E| is very much less than
the number (N, ) with energy £, . From Boltzmann’s law, it then follows that a

great majority of the molecules are in their Vibrational ground state at room
temperature. It is thus clear that at room temperature (T=300 K), the number
of molecules in the excited Vibrational state falls off rapidly with the
frequency of the excited vibration, but at lower temperatures, say at liquid
nitrogen temperature (T=77K), the proportion falls off even more rapidly as
seen from Table 1.1.

Now, as a consequence of the Boltzmann distribution law, most
molecules would be found in the vibrational ground state (v"= 0), the
dominant transition in infrared spectroscopy is from v =0tov =1 and the
transitions between adjacent states other than 0 and 1, though theoretically
permitted, occur with very low probability because of the lower population.
It may be noted here that the intensity of an absorption band is always
proportional to the molecular population of the initial state from which the
transition takes place. For a strictly harmonic oscillator however, such
transitions say, from 1 to 2 are indistinguishable from the transitions
between the levels 0 and 1 since all the energy levels of a harmonic

oscillator are equally spaced.
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Table 1.1: Boltzmann population distribution as a function of frequency

(Sathyanarayana, 2000)

Frequency (cm™ 100 300 500 900
N1/No at T = 300K 0.619 0.237 0.091 | 0.013
Ni/Noat T = 77 0.139 0.003 0.001

The transition from state v’ = 0 to state v’ = 1 is known as the fundamental
transition or simply as a fundamental. It should be noted here that the
infrared fundamentals of interest (i.e. the Vibrational bands) occur between
4000 and 100 cm™.

Stretching Frequency:

We give the frequency of the stretching vibration for a diatomic molecule

A-B as

v=[Lj\/E (in cm™) (1.12)
27ec )\ 1

In equation (1.12), c is the velocity of light and p is the reduced mass and is

m,mg
mA + mB

related to the masses of atoms A and B by u = . It may be noted

here that the vibrational stretching frequency is the characteristic of the
diatomic molecule and is dependent on the force constant besides the

masses of the two atoms concerned.

Anharmonic Oscillator:

The potential energy of a diatomic molecule in reality is more complex than
that of a harmonic oscillator (equation. 1.4) since for larger values of
displacement the molecule must dissociate. Figurel.4 shows the potential
energy of a diatomic molecule as a function of the internuclear distance r. In

the same figure (Figure. 1.4) also we have shown the curve (parabola)
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obtained from the equation (1.4) for a harmonic oscillator. Figure 1.4 shows
that the true curve is steeper than the parabola at smaller inter-nuclear
distances. The reason is, interatomic repulsive forces become larger in this
region. Also we see from Figure. 1.4 that at large inter-nuclear distances, the
true potential energy tends asymptotically to a constant value representing
complete dissociation of the molecule into atoms. It is obvious that the true
potential energy well is asymmetric. However, near the equilibrium inter-
nuclear separation, the parabola is a good approximation to the energy of a
real molecule. From this we get a clear cut indication which suggests,
modification of the expression is required for the energy of a harmonic
oscillator to include the effects of ‘anharmonicity’. For the potential energy
of an anharmonic oscillator a number of expressions have been suggested.
The Taylor series expansion is the simplest method to expand the
Vibrational potential energy about the equilibrium position for small nuclear

displacements. This is shown in the following expression

2 3
V=V, + o q+l 8_1; q2+(lj 6_1? q (1.13)
oq ), 2\0q9" ), 6\ 9q ),
here the subscript zero indicates that the values are evaluated at the

. . oV .
minimum of the potential energy so that 6_: 0. Vo is a constant
q

independent of q and may be neglected since it does not affect the
Vibrational frequencies. It may be noted that for the harmonic oscillator, we

consider only the second derivative.
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Fig. 1.4: The Morse Curve: The energy of a diatomic molecule

executing anharmonic expansion and compressions.
For the potential energy of a diatomic anharmonic oscillator, a popular

function is the ‘Morse function’ which is given by

V(r)zDeq [1—exp {—a(r — reqj}f (1.14)

Here D.4 denotes the spectroscopic dissociation energy of the molecule
and « is a constant characteristic of the internuclear bond in a specific
electronic state. To the shape of the Morse curve (Figure. 1.4), a number
of molecules can be fitted reasonably well. As r goes to zero, the Morse
function approaches a very large finite value rather than becoming infinite.
This defect is not significant since the behavior of the potential energy
near r = 0 is unimportant. The potential energy becomes equal to the
spectroscopic dissociation energy, Do when r tends to «.

In case of an anharmonic oscillator, the approximate solution to
the Schrodinger equation expressing the Vibrational energy in terms of the

harmonic frequency v, and an anharmonicity constant x, is given by,
1 1Y
E=|v+ 5 hv, —| v+ 5 hv x,(Joules) (1.15)

Eg. (1.15) provides a means of adjusting the observed frequency to the

harmonic oscillator frequency. Here the second term is subtracted from
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the first as expected from the convergence of the vibrational levels at
higher quantum numbers. In two important ways, anharmonicity affects
the molecular vibrations:

i. The selection rule derived for the harmonic oscillator namely

AV = 1 ceases to be a rigorous selection rule and transitions

with AV =+ 2, + 3, etc., are allowed.

ii. The vibrational levels are not spaced apart equally by the quantity
hv as shown in Figure. 1.5. Hence in this case, not only it may be
possible to observe the transitions with AV =+ 2, + 3, etc., but
also these transitions will not have exactly double, triple, etc. the

frequency of the fundamental transition for which AV =+ 1.

In case a single vibrational quantum number changes by +1, the transition
is, as stated before, a fundamental transition and the corresponding
frequency, a fundamental frequency usually denoted by the symbol V. In
case a single quantum number changes by 2, the transition is said to be
the first overtone. In case AV = £3, it is referred to as the second overtone
and so forth. If two Vibrational quantum numbers change simultaneously
in a polyatomic molecule, the resulting transition is referred to as a
combination frequency. It is known that combination bands are of two
kinds, sum band (let us say, V' ; + V) representing simultaneous changes
in two (or more) Vibrational quantum numbers and a difference band (let
us say, V ;- V,) representing a transition from an excited state V' =1 to
V’ = 2. Thus we see that presence of overtone and combination bands
indicates the anharmonic character of the vibrations. In case overtone and
combination bands are not observed, the harmonic approximation is an
excellent one. It is obvious that the intensity of the overtone and
combination bands is usually an order of magnitude weaker than that of
the fundamentals. With respect to the first overtone, the second overtone
is expected to be weaker. A gradual decrease in the intensity of the higher

overtone bands is predicted in general.
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Fig. 1.5: The allowed vibrational energy levels and typical transitions
between level for a diatomic molecule executing anharmonic

oscillations.

The Eq. (1.15) which gives the energy of an anharmonic oscillator, may be

rewritten as

E=(v+%)hv{l—(v+%)xe} (1.16)

From Eq. (1.16) we see that the energy difference between the Vibrational

states Vand V + 1 is given by
AE=[1-2(1 + v)x,] hv, (1.17)

Eqg. (1.17) tells us that if x. is positive, the energy spacing decreases with
higher values of the vibrational quantum number V. The vibrational energy
spacing increases, if x. is negative. Usually, positive anharmonicities are

observed for bond-stretching modes.
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1.7 Structure of the benzene molecule:

Two scientists Kekul and J.Loschmidt thought of benzene's ring structure
independently—a type of occurrence that is not unusual in science. The cyclic
nature of benzene was finally confirmed by the crystallographer Kathleen
Lonsdale.Benzene presents a special problem in that, to account for all the
bonds, there must be alternating single and double covalent bonds between

carbon atoms, which may be represented as:

Figure 1.5A Benzene hexagonal structure with alternate single and double

bonds

Using the technique known as X-ray diffraction, researchers discovered that all
the carbon-carbon (C-C) bonds in benzene have the same length (140 picometers
(pm)). The length of each C-C bond is greater than that of a double bond (134
pm) but shorter than a single bond (147 pm). The bond length of 140 pm, which
is intermediate in length, is explained by the concept of "electron delocalization":
the electrons for C-C bonding are distributed equally among the six carbon
atoms. (One representation is that the structure exists as a superposition of two

"resonance structures," rather than either form individually.)

This delocalization of electrons is known as aromaticity, which gives benzene
great stability. This enhanced stability is a fundamental property of a class of
molecules called "aromatic molecules," differentiating them from molecules that
are not aromatic. To reflect the delocalized nature of the bonding, benzene is
often depicted with a circle inside a hexagonal arrangement of carbon atoms

(which are not labeled):
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Figure 1.5B Benzene hexagonal structure with a ring formed by delocalized

pi-electrons.

1.8. Vibrations of Polyatomic Molecules:

Energy and Spectral Transitions:

It can be seen that the energy level diagrams such as those used to
describe transitions in a diatomic molecule (Figure. 1.3 or Figure. 1.6) can
illustrate the vibrational transitions in polyatomic molecules except that
there will be one such diagram for each of the 3N — 6 fundamental
vibrations of the molecule. Also it can be seen that the abscissa of each
diagram is in the units of a normal coordinate. However, some of the
potential energy curves will represent vibrations that are essentially
stretching motions.

For a molecule (having N atoms), each vibrational energy is
characterized by a set of 3N — 6 vibrational quantum numbers v;, v,,
......... ,Van.e. Now, if all the vibrational quantum numbers are equal to zero,
the corresponding level is called the ground state vibrational level.
Generally we refer the energy of this level as the zero point energy level,
EL (0, O, ... ) and is not zero. If a polyatomic molecule has only one
vibrational quantum number say, v, = 1 and all other vibrational quantum
numbers Vv; (i = k) are zero, the energy level is called the fundamental or
the first harmonic level. Here we note that the band arising from a
vibrational transition from the ground level to a fundamental level is
known as a fundamental band or simply as a fundamental. Here, also it
may be noted that each of the 3N — 6 vibrational quantum numbers of a
polyatomic molecule can independently be excited to a fundamental level

from the ground state and each of these represents a fundamental
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transition giving rise to a normal mode of vibration. For normal vibrations,
it is the property that only one vibrational quantum number changes
during a vibration. We describe each normal mode of vibration by a
coordinate known as the normal coordinate and is generally denoted by Q.
For a non-linear N-atom molecule, there are 3N — 6 normal coordinates
(Qz, Q Q3 ...... , Qsn.6). Here we note that corresponding to each normal
vibration, there is a normal frequency generally denoted by V and for a N-
atom nonlinear molecule, there are 3N — 6 normal vibrational frequencies
Vi, Vi V3, ... V3ns Here the symbol v, should not be confused with
stretching, since it is also used to denote a stretching vibration. For a
polyatomic molecule, the procedure of calculation of normal vibrations -
their frequencies and form — is referred to as normal coordinate analysis.
Let us consider a triatomic molecule, for example SO,, having three
vibrational quantum numbers vy, V5, V3 and (0 0 0) represents the ground
vibrational state. Here, the fundamental V' ; corresponds to the transition
(000)>(100)and V,to (000) > (01 0) transition. 2V ,, the overtone
of the V', fundamental, corresponds to the transition (00 0) = (02 0) and
so forth. We write the first overtone of the fundamental say, Vas 2V«
although actually the frequency of the overtone may be slightly less than
twice that of the fundamental. Similarly, the second overtone is written as
3V It may be noted that simultaneous excitation of more than one
guantum number gives rise to a combination band. It is observed that the
overtone and combination bands are useful in the determination of
anharmonicity constants. We write the total vibrational energy for a
polyatomic molecule as the sum of the individual energies for 3N — 6

vibrations (E; + E; + E3 + ....... + E3ng), il

3N-6 1
E = Zl:("i + 5}“@ (1.18)

From Eq. (1.18), it is clear that for an N-atom molecule the zero-point

energy £, (0, 0, ........ ) may be given as simply
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1.9.

E) ==> hv, (1.19)

Molecular Spectroscopy:

Different Approach of Study:

To understand and analyze a physical system in its befitting manner
molecular spectroscopy is an area of active interest from many stand
points. Having its numerous connections with many other branches,
molecular spectroscopy has been playing an important role both in
experimental and theoretical approaches. Being fueled by the rapid
development of sophisticated experimental approaches, at present
molecular spectroscopy is going through an essential change of renewed
interest. Better initial-state preparation, improved light sources and
specially designed pumping schemes, and more sensitive detection
techniques are providing ever-improved resolution and a wider range of
accessible final states. A close view reveals that in recent years the
molecular spectroscopy is also undergoing a change in different direction.
Not only better results, new ideas are also forth coming. One example of
the changing attitudes is the increasing concern with time evolution. The
time-energy uncertainty relation and the pursuit of higher resolution mean
that traditional spectroscopy is implicitly equivalent to the study of the
stationary states determined by the long-time limit of the intramolecular
dynamics. The recent increasing interest in the role of anharmonicities and
resonance couplings made unavoidable by the study of higher-lying
rovibrational states and the experimental reality of avoiding
inhomogeneous broadening (Quack, 1990) makes the entire time domain
of direct interest to spectroscopists (Bitto and Huber, 1992). The very
complementarity with the studies in the frequency domain (broad
homogeneous spectral features = early time dynamics and vice versa)
makes lower-resolution spectra of interest. On the other hand, the

traditional concerns of spectroscopy (Herzberg, 1945, 1950; Barrow, 1962;
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King, 1964; Hollenberg, 1970; Herzberg, 1971; Bunker, 1979; Steinfeld,
1985) remain very much with us.

The formalism in modern spectroscopy discusses both level structure
beyond harmonic limit and corresponding dynamics. A Hamiltonian is thus
unavoidable since it is the generator of time evolution. There needs a
practical method for the determination of the eigenvalues of the
Hamiltonian. In case of traditional Dunham-like expansion (Dunham,
1932), the spectra are well approximated by a small number of constants.
The fit of vibrational spectrum of triatomic molecule in its electronic
ground state is expressed by the expansion
E(Vl,vz,v3)=Zw,.(V[+lj+2xy(v[+lj(vj+lj+ Z Vi [V1+lj(vj+lj[vk+lj (1.20)

[ 2) i 2 2) Ga 2 2 2
Here, E (v1, V2, v3) is the energy level in wave number units. The Eq. (1.20)
provides a fit to the observed levels within an error, which is almost
experimental accuracy. The parameters in this expansion are directly
related to a Hamiltonian. The familiar way of doing this proceeds in two
steps. First, the electronic problem is solved in the Born-Oppenheimer
approximation, leading to the potential for the motion of nuclei. Then the
Schrédinger equation for the eigenvalues of this potential is solved. Since
for any diatomic molecules the potential is a function of many coordinates,
neither the first nor the second step is simple to implement. For a number
of test cases this procedure has been carried out and for diatomic
molecules of lower-row atoms it can challenge experiments in its
precision. For larger molecules it is still not practicable to compute the
required potential with sufficient accuracy. It is therefore often
approximated using convenient functional forms. Not too far from deep
equilibrium point, the potential is expanded in term of displacement
coordinates relative to equilibrium configuration. There are two general
methods which are presently used to describe molecular vibrations. In the
traditional approach, based on integrodifferential techniques, the
molecular Hamiltonian is parameterized in terms of internal coordinates

(Wilson et al., 1955). The potential is modeled in terms of force field
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constants either through complex calculations involving the molecular
electronic energy for several configuration (Raynes et al., 1987) or
experimentally, by fitting of spectroscopic data (Gray and Robiette, 1979).
Although for diatomic molecules very accurate information on force fields
is now available (Ogilvie, 1978), this is not the case for polyatomic
molecules where the knowledge of force fields are poor due to the large
number of force constants. The potential may also be modeled by
representing the anharmonicity of the bonds, as a first approximation, by a
sum of anharmonic Hamiltonians; among these the Morse potential is the
most commonly used (Halonan and Child, 1982). The molecular rotation-
vibration spectrum is provided by the Dunham expansion (Dunham, 1932).
This is an expansion of energy levels in terms of vibration-rotation

quantum numbers. For diatomic molecules, the expansion is

1Y ~
E(V’J):Zyij (V+Ej [J(J‘FI]J (1.21)
i,J

The coefficients y; are obtained by a fit to the experimental energy levels.
But in this approach, there are few drawbacks namely (1) no Hamiltonian
operator is available and (2) for large polyatomic molecules, one needs a
large number of parameters obtained by fitting large experimental data
base, which is not always available. (3) And this expansion does not
contain any information about the wave function of individual states. Thus
the matrix elements of operators cannot be calculated directly.

The second approach, called potential approach provides more
sophisticated analysis. Here, energy levels are obtained by solving the
Schrédinger equation with an interatomic potential. The potential V is
expanded in terms of interatomic variables. For diatomic molecules, the

possible expansion is (lachello and Levine, 1982)

V(=Y a, [r;r‘)j (122)

The coefficients, a, are obtained by a fit to the experimental energy levels.

The solution of the Schroédinger equation also provides wave function ¢(r)
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from which matrix elements of various operators can be calculated. In this
approach, all manipulations are either differentiations or integrations.

The third approach to analyze molecular rotation-vibration spectra is
based on the algebraic techniques. The success of the Interacting Boson
Model of Arima and lachello (Arima and lachello, 1975, 1976; lachello and
Arima, 1974) has stimulated new interest in the study of many body
systems governed by algebraic Hamiltonian. The algebraic Hamiltonian is
written in terms of boson creation and annihilation operators
characterizing the normal modes of the system. Contrary to potential
approach, all manipulations are algebraic. The technical advantage of an
algebraic approach is the comparative ease of algebraic operations.
However, the result obtained by comparison with experiment is equally
important. Another important advantage of this approach is that entire
class of molecules can be described by general form of algebraic
Hamiltonian where only the parameters are different for different
molecules. The algebraic (or matrix) formulation of quantum mechanics is
less familiar than differential (or wave) formulation. For diatomic
molecules, the solution of Schrédinger equation with inter-atomic
potential is very simple, thus, algebraic approach is not very much useful in
application in diatomic molecules. But, in case of tri-atomic and
polyatomic molecules, the algebraic approach gives very useful results in a
simplified manner. The formalism necessary to analyze experimental data
has been developed in two ways; (i) in the first case, the rotations and
vibrations are treated together and the full three dimensional space of
coordinates, r and momenta p is quantized with boson operators, giving
rise to Lie algebras of U(4) (lachello and Levine, 1982; lachello and Oss,
1996; lachello, 1981) and products thereof (Roosmalen et al., 1982, 1983b)
(i) in the second case , rotations and vibrations are treated separately and

each one dimensional space of coordinates x and momenta p, is

guantized with boson operators, leading to one dimensional Lie algebras
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1.10.

U(2) and products thereof (Roosmalen et al., 1984; lachello and Oss,

1991).

Concept of a Group:
The concept of groups had its origin more than 150 years ago. The
development of the theory of groups was mainly due to the famous
mathematicians like Gauss, Cauchy, Abel, Hamilton, Cayley. After the
advent of modern quantum mechanics in 1925, it did not find much use in
physics for time being. The applications of group theory in physics were
soon recognized and the new tool was put to use in the calculation of
atomic structures and spectra by H. A. Bethe, E. P. Wigner and others.
Group theory has now become indispensable in most branches of physics
and chemical physics (Cornwell, 1997; Kim, 2004; Joshi, 2005).

Let us consider a set G of elements G, Gy, G, ..... is said to form a
group if a law of multiplication of the elements satisfies the following
conditions (Elliot and Dawber, 1979).

(1) The product G;G; of any two elements is itself an element in the

seti.e.
G;G,=G,forsome G4 inG (1.23)
(2) In multiplying three elements, G; G, G; together, it does not

matter which product is made first. In other words,
G1 (G2G3) = (G1 G2) G (1.24)
where the products inside the bracket is carried out first.
(3) One element of the set denoted by E and is called identity must
have properties
EG;=G; and G;E = G; forany G; inthe set G (1.25)
(4) To each element G; in the set, there corresponds another element
in the set, denoted by G;* and is called the inverse of G; which
has the properties

G; G; 1= E and G; = G;=E (126)
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It may be noticed that four properties satisfied by sets are very
much similar in nature. In connection with a group, we may note
the following terms:

(i)  The number of elements in a group is called its order.

(ii) A group containing a finite number of elements is called a
finite group.

(iii) A group containing an infinite number of elements is called
an infinite group. An infinite group may be either discrete
or continuous; if the number of the elements in a group is
denumerably infinite, the group is discrete; if the number of
elements in a group is nondenumerably infinite, and the

group is continuous (Cornwell, 1997; Kim, 2004; Joshi, 2005).

1.10.1 Lie Groups:

A group in which the law of composition and the law of inversion are
continuous in all the group elements, is called a topological group. The
dependence of the elements x;, x,, etc., of a topological group G on its r
continuous parameters can be written explicitly as
X1=x1(a1, 02, ceeereeneee. a,), Xx2=x, (b, by, eenn........ by) etc.

Let X ;x,5X3(C1, Ca) o ) and x ;P = x4 (dy, da, ... dy)

The parameters of x3; and x4 can be expressed as functions of the
parameters of

x;and x,, thatis,

Ci=Ci (a7, Az, ar; by, b, ... b,) (1.27)
di=di (07, 02 ay) fori<i<r

A topological group is called an r -dimensional Lie group if there exists
a neighborhood N of the identity element e such that the continuous
parameters of the product of two elements and those of the inverse of an
element in N are continuous differentiable functions of the parameters of
the elements, that is, if ¢/s and d/s of Eq. (1.27) are analytic functions of

a;/s and b;'s for elements in N provided that x3 and x,4 lie in N when x; and
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X, do. In addition, there will be laws for combining the other n - r discrete
parameters.

We see that it is convenient to choose the continuous parameters of a
Lie group such that the image of the identity element e is the origin of the
parameter space, i.e.,, e=x(0, 0, 0, ........... 0) . Having this parameterization,
due to the analytical properties of the Lie groups, an element near the
identity may be written as
x(0,0, ..., ¢€,...,0) =x(0,0,.,0)+igl (0,0, .,0), (1.28)
to first order in €;. The first operator /; can be obtained from (1.28) and is

given by [j:limH'LJ{x(O’ ...... N ,0)—x(0,0, ..... 0)}

&;—0 lgj

For a Lie group, all the properties can be derived from the r operators J;
(1 <j<r) which need to be defined only near the identity element of
the group.

We can arrive at an element of the group at a finite distance apart
from the identity by the successive application of the product rule. Thus,
let us say that we wish to generate the element x (0, O,......... Tjy o 0). To
do the same, let us first write a; = Ne;, where N is a large positive integer so
that g;is a small quantity.

Then,

(1.29)

Now, allowing N to tend to infinity and using the algebraic identity

N
: X
lm|l1+—| =
[ Nj exp(x)

N—ow

We have from Eq. (1.29)
x(0,0,.......... a, ... 0) =exp(ia,l;) (1.30)
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which is an exact result. We are to understand the exponential function on
the right-hand side of Eq. (1.30) as being formally equivalent to its
expansion in the powers of the operator ;. It may be noted that for a
general element of the group, we can easily extend the above result to

obtain

x(ay, ay, ... a,)=exp| Y ia,l, (1.31)

j=1
Here we note that all the elements of the Lie group belonging to the
subset containing the identity can be obtained by giving various values to
the parameters g; on the respective prescribed intervals. That is why the
operators /; are called the generators of the Lie group. Also we should note

here that with r continuous parameters a Lie group has r generators.
1.10.2 Lie Algebras and Representations of Lie Groups:

Let us consider a Lie group with r continuous parameters a, having the r
generators Iz, Io,eceeeeeiiiiicnnnne. I.. It is seen that any element of the Lie

group can be expressed in the form

x(al, Ayy e , ar) = exp {Ziaklk} (1.32)
k=1

For a finite group, it is seen that all the properties of the group can be
obtained from the structure of its multiplication table. It can be shown
that for a Lie group, the commutators of its generators determine the
structure of the group.

Thus, let us consider two particular elements of the Lie group of the

form

x(0, 0, ......... a, ....0)=exp(ial,)
Here, the product of these two elements exp (iaglk) exp (ia)l;)), must belong

to the group. Since the generators of a Lie group do not, in general
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commute with each other (they commute only when the Lie group under
consideration is abelian), there is no simple way of writing this product
element. However, we may use the fact that such a product involves the
commutator of /;and /.. Now, for the product exp(iali) exp(ial) to belong
to the group, it therefore follows that the commutator [/, /] must be a

linear combination of the generators, i.e.
r .
_ J
[1.0]=Dcll,, I<k, I<r (1.33)
J=1

where C,i, are certain co-efficient. It is known that the commutators of

pairs of generators of a Lie group determine the structure of the Lie group

completely in analogy with the multiplication table for a finite group.

Hence the coefficients C,i, are known as the structure constants of the Lie

group. These structure constants are the characteristic property of the Lie
group and do not depend on any particular representation of the
generators. Since the generators of a Lie group themselves are not unique,
hence these structure constants are also not unique. Eq. (1.33) provides us
with a law of composition between any two elements of the vector space
such that the resulting vector is also an element of the vector space. In
fact, the set of real linear combinations of the generators of a Lie group is
a Lie algebra.
A Lie algebra is a real r -dimensional vector space L with elements (x, y, z,
. ) endowed with a law of composition for any two elements of L

denoted by [x, y] such that
[x,y]eL
[x,y]=-[y.x] (1.34)
[ely.z]]+ [ [=a]]+ (=[x 0]] =0
for all x, y, z € L. We refer the law of composition [x, y] as the

commutator of x andy.
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The commutators of the generators of a Lie group defined in Eq. (1.33)
satisfy the above properties, hence we obtain the following relations

among the structure constants:
J— _ .
Cu = ~Cii
y (1.35)
m _s m_s m s | _ 1.35
Z[cklcjm +C; Ch +cjkclm] =0
m=1

Since the generators I, are Hermitian, Eq. (1.33) shows that the structure

constants c,fl are purely imaginary.

It may be noted here that the importance of the Lie algebra lies in the
fact that we may generate a representation of the Lie group by considering
a matrix representation of the Lie algebra. Now, if we are able to find a set
of r square matrices all of order p (let us say), such that they satisfy the
commutation relations (1.33) with the given structure constants, then
using these for the I ’s in Eq. (1.32), we would generate a p —dimensional
representation of the Lie group. Thus, we can take it as a general rule that
a representation of a Lie algebra can be used to generate a representation
of the associated Lie group.

Let us now apply the above discussion to SU(2), as an example. The
three generators of SU(2) can be chosen to be the Pauli spin matrices

0 1 0 —i 1 0

A Y R PR A (1.36)

Which are a set of three independent traceless Hermitian matrices of
order 2. For the generators of SU(2) we can then choose the set (E, oy, oy,
0,), where E is the unit matrix of order 2.

The generators of SU(2) given in Eq. (1.36) satisfy the commutation

relations

|:O'j, O'k:| = 21'21: ey (1.37)
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Here gjkl is the fully antisymmetric tensor of rank 3 whose only

nonvanishing elements are
Eiyy = Epy = E3y =—Ey3 = —Eyy =3y =1 (1.38)

Here the indices j, k, | stand for any of x, y, z or for 1, 2, 3. It should be
noted here that the six equations in Eq. (1.38) is generally abbreviated into
a single equation and is written as €523 = 1 and all permutations with
proper signs. One can see here that the components of the tensor gy
multiplied by 2i are evidently the structure constants of SU(2). Thus, the
Lie algebra of SU(2) is the set of all real linear combinations of , oy, o,, and
0.

To make the conception more clear let us now look at the following

three matrices:

010 0 =i 0 1 0 0
A=10 0/,4=li 0 0, 4=/0 -1 0 (1.39)
00 0 0 0 0 0 0 0

We can easily verify that all these three matrices satisfy the same

commutation relations as the generators o’s, i.e.
[lj > ﬂk} =20) &k, (1.40)
l

Thus we see that the A’s generate a representation of the Lie algebra of
SU(2) and can therefore be used to generate a three-dimensional
representation of SU(2) itself.

For a Lie group, the maximum number of mutually commuting
generators is called its rank. Thus, the rank of SO(3) is 1 because no two of
its generators, L,, L, and L, commute with each other. On the same
reasoning, the rank of SU(2) is also 1.

Casimir operator for a Lie group is the operator which commutes with
all the generators of the Lie group. The number of independent Casimir

operators of a Lie group is equal to its rank. Casimir himself recognized
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1.10.3

that one such operator could always be constructed by taking a suitable
bilinear combination of the generators.

Thus, the one and only Casimir operator of SO(3) is L* = L +L,*+L/,
which commutes with each of L, L, and L,. Similarly, the only Casimir
operator of SU(2) is 0° = 0,°+0,°+0;".

The Casimir operators of a Lie group can be diagonalized
simultaneously with its generators. Hence the eigenvalues of the Casimir
operators may be used to label the IR of the Lie group. The Casimir
operator L? of SO(3) thus has the eigenvalues /(I +1), where | takes on all
nonnegative integral values, and hence the IR of SO(3) may be labeled by
the index / . The Casimir operator o® of SU(2) has, in general, the eigen
values j (j + 1) where j takes all nonnegative integral and half-odd-integral
values [the representation (1.36) for the generators is a special case with
j=1/2]. Hence, the IR of SU(2) can be labeled by j.

On the basis of the brief discussion on Lie groups and Lie algebras
made in this section now we are in a position to summarize the properties

of the Lie algebras which are given in the following section.

Properties of Lie Algebras:

(a) Definition:

A

Let us consider a set of operators as X, (a = 1,............ r) . If this set of

a

operators satisfying the commutation relations

(X%, |= 2ok (1.41)
where,
C;,=—C;, and | X,, %, |=0 (1.42)

together with the Jacobi identity

[ESARATIES AR AP0 o Al EIwe
It is said to form a Lie Algebra G
Xa € G (1.44)
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In a similar way, a sub-algebra G’ of G also can be defined.

Let us consider a subset Y; of the X,’s. Now, if
s 5 P
RAAE N (1.45)
k

the subset ¥; of X ’sis said to form a sub-algebra G' of G.

We denote this situation by,
X G, Y eG, GG (1.46)
We say an algebra (or sub-algebra) as Abelian if all its elements commute

[f(a,f(b]:o, VX eG (1.47)

(b) Generators and Realizations:

It is important to note that for the purpose of the definition of an algebra
it is not necessary to specify any explicit form of the operators. If one
writes the operators as differential operators, they are said to be the
generators of the corresponding group of transformations. In such a case
the resulting algebraic structure is said to be a realization (of the abstract
algebra). We can also realize the abstract algebraic structure with a set of

matrices or with products of creation and annihilation operators.

(c) Cartan’s Classification:
Here we give the Cartan’s classification of all the admissible, semi-simple,

Lie algebras in Table 1.2. (lachello and Levine, 1995)

Table 1.2: Admissible Lie Algebras:

Name Label Cartan Label
[Special] Unitary [S]1U(n) A(n-1)
[Special] Orthogonal [S] O(n), n=o0dd B(n-1)/2
[Special] Orthogonal [S] O(n), n=even Dn/2
Symplectic Sp(n), n=even Cn/2
Exceptional G,, F4, Eg, E7, Eg G,, Fa, Eg, E7, Eg
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Algebras should be denoted by lower case letters, and their
associated groups of transformations by capital letters. We thus see that
so(3) denotes the algebra of special orthogonal transformations in three
(3) dimensions, while SO(3) denotes the associated group. However, it has
become customary, to denote both groups and algebras by capital letters.

We note that the letter S denotes special transformations, that is,
transformations with determinant +1. Also it should be noted that when
dealing with algebras, the letter S is not important for orthogonal algebras,
B and D types, while it is important for unitary algebras, since U(n) and
SU(n) differ in the number of operators. One can see here that both
orthogonal and special orthogonal algebras have the same number of
operators. When dealing with orthogonal algebras, the letter S is deleted

in the text to avoid unnecessary burdening of the notation.

(d) Number of Operators in the Algebra:
For any admissible Lie algebra, one knows the number of operators in the
algebra, denoted by r (called the order of the algebra) and is given in Table

1.3.

Table 1.3:  Number of operators in the Lie algebras

(l1achello and Levine, 1995):

Algebra Number
U(n) n?
SU(n) n-1
1
SO(n) ) n(n -1)
1
Sp(n) E n(n+1)
G, 14
Fa 52
Es 78
E; 133
Es 248
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(e) Isomorphic Lie Algebra:
Some algebras which have identical commutation relations are called
isomorphic algebras. In the Table 1.4, the sign @ denotes direct sums of

the algebra i.e. addition of the corresponding operators

Table 1.4 : Isomorphic Lie algebras (lachello and Levine, 1995):
Cartan Notation Isomorphic Algebra
A =By =Cy SU(2) = SO(3) = Sp(2)
B,=C, SO(5) = Sp(4)
SO(4) = SU(2) @ SU(2) =SO(3) @
Da=A O A
SO(3)= Sp(2) ® Sp(2)
A; = Ds SU(4) = SO(6)

(f) Examples of Lie Algebra:

It is known that the simplest example of a Lie algebra is the angular

momentum algebra. One can see that this algebra is a realization of SO(3)

and has three elements, the three components of the angular momentum
G=J,,J,,J. (1.48)

With commutation relations

(o, | =00 =i )=0, ()

x>y
We see that SO(3) has a (trivial) sub-algebra, SO(2), composed of only one

component, J; (let us say),
!
G'=J. (1.50)
satisfying the (trivial) commutation relation

[/..J.]=0 (1.51)
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One should note here that the algebra of SO(3) has only one independent

Casimir invariant
C(SOQB))=J;+J;+J:=J* (1.52)

Hence it is an algebra of rank 1. Cartan called this algebra as B;.
It may be noted that the sub-algebra SO(2) also has a (trivial) Casimir

invariant, i.e., J, itself,
C(S0(2)) = J? (1.53)

which is also a trivial algebra of rank 1. This algebra was called as D; by
Cartan.

It may be noted that the invariant operators are important because
they are related to conserved quantities. As an example, here we may

refer the case of angular momentum.

(g) Representations:

When we apply Lie algebras in the solutions of problems in physics
and chemistry, we need to construct representations of the algebras. It is
known that these are linear vector spaces over which the group elements
act. We note that the representations of Lie algebras are characterized by
a set of numbers (quantum numbers) that can take either integer or half-
integer values. Those which take integer values are called tensor
representations, while those that take half-integer values are called spinor
representations. Another important point here we are to note is the
concept of irreducible representations, i.e., vector spaces that transform
into themselves by the operations of the algebra, and cannot be further
reduced.

We note that the irreducible representations of unitary algebras, U(n), are
characterized by a set of n integers, corresponding to all possible partitions
of an integer s,

A+ +A, =5, withA4 >4, > ... A, (1.54)
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We often arrange the integers As into a diagram, called a Young diagram
(or tableau). In the Young diagram, the first row is A; the second is A,, and

so on.

A

ooood

4,

n
ooo (1.55)

2

oo

Also we can use another notation which is [A;, Ay A ........., A, ]. In this
notation, for example, the diagram (1.55) may be stated as [5, 3, 2].

It may be noted that the irreducible representations of special unitary
algebras, SU(n), are characterized by a set of integers, as in the case of
U(n), but with one fewer, i.e.,

A+Ah+ +A =5, withA 242> ... >, (1.56)

Also we note that the irreducible representations of SO(n) are

characterized by a set of integers, but corresponding to the partition

T VAR TR +u, =8, with g, > p, > ... >, (1.57)
Where,

n

—,n=even

2

V= 1 (1.58)
n——.,n=odd
2

Similarly, the irreducible representations of Sp(n) are also characterized
by a set of integers

TR TR A +u, =8, with g, >, > ... >, (1.59)
where v="_.
2

The summary of the discussion made in section 1.10.3(g) is shown in

Table 1.5, where the results for the exceptional algebras are also given. It
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may be noted that the number of integers that characterize the

representations is also equal to the rank of the algebra.

Table 1.5: Number of integers that characterize the tensor

representations of Lie algebras:

Algebra Number
U(n) N
SU(n) n-1

SO(n), n=even n/2
SO(n), n=odd (n-1)/2
Sp(n) n/2
G, 2
Fa 4
Es 6
E; 7
Es 8

Also it may be noted that there is a complication that arises only when
dealing with orthogonal algebras in an even number of dimensions, SO(n),
n = even. We see, the complication is that the partition (equation 1.57) is
not sufficient to characterize uniquely the representations since there
are, two equivalent representations (Hamermesh, 1962), when the last
guantum number, u,, is different from zero. We denote this either by

writing explicitly

+
[ﬂl: ;Ll: ;Ll3 """""" > —/uv]r /’lv >O (160)
Or by writing simply
[,ul, Y72 7 , |4, ], (1.61)
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and remembering that there are two such states. In molecular physics
SO(4) and SO(2) play an important role. Hence the complication
(representation 1.60) cannot be overlooked. Here one should note that
the complication (representation 1.60) has also an explicit physical

meaning, since it is associated, for example, with the double degeneracy

of m, 6 .............. orbitals or the [1 , A vibrational states in linear

molecules.

(h) Tensor Products:

We can form tensor products with the representations of Section

1.10.3(g) Generally we denote Tensor products by the symbol , ®

AR N [ /XA KA K. A (1.62)

It may be noted that there are definite rules on how to multiply
representations of which we state here one (Hamermesh, 1962). Let us

consider the product of any representation, for example,

O O
0 (1.63)
by a one-row representation, for example,
O O (1.64)
Let us draw the pattern for the first factor, using a symbol, for example, a,
a a
a (1.65)

Let us assign another symbol, for example, b, to the second pattern. Let
us apply b to a in all possible ways subject to the rule that no two bs

appear in the same column,

aabb®d®aab®aab®aa
a a b a b b
b b

(1.66)

[1]®[1]=[2]®[1.1] (1.67)
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(i) Branching rules:
It is seen that for any given quantum mechanical problem one needs to
find the complete set of quantum numbers that characterize uniquely the
states of the system. It is clear that this corresponds to finding a complete
chain of sub-algebras

GoG'oG@"> ... (1.68)
For solving this problem, there is a definite mathematical procedure
(called the branching problem). When we apply the procedure, we need
also to deal with the following question. For the sub-algebra G/, what are
the representations contained in a given algebra G (branching rules). It
may be noted that this problem is also completely solved, and there exist

tables of branching rules.

(j) Examples of Representations if Lie Algebra:

Once again here we return to the simple example of the angular
momentum algebra, SO(3). The tensor representations of the algebra are
characterized by one integer (Table 1.5), i.e., the angular momentum
guantum number J. In a Similar way the representations of SO(2) are
characterized by one integer (Table 1.5), i.e. , M the projection of the

angular momentum on the z axis. Thus the complete chain of algebras is

G>G'=S50(3) > S0(2), (1.69)
And the complete set of quantum number is
SO(3) o SO(2)
N N (1.70)
J M

Bracket notation of Dirac is used here following standard practice.
Corresponding to (representation 1.70), the ket|J M) is also called a
basis state.

It may be noted that according to the branching rules for
SO(3) ©S0(2), in the representation J of SO(3), the values of M are all the

integers between -J and + J . Again it should be noted that the
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complication mentioned at the end of the Section 1.10.3.(g), is due to the

fact that SO(2) is in an even number of dimensions.

(k) Eigenvalues of Casimir Operators:

In the application of algebraic methods to problems in physics and
chemistry another ingredient we need is the eigenvalues of Casimir
operators in the representations of Section 1.10.3.(g). We give the known

solution in Table 1.6.

(1) Examples of Eigenvalues of Casimir Operators:
In Table 1.6 we give the eigenvalues of the Casimir operator of SO(3) in

the representation J as
<C(80(3))>=J(J +1). (1.72)

This is a well known result. In a similar way, we can obtain the
eigenvalues of the Casimir Operators of order 2 of SO(4) in the

representation T, T2 as
<C(S04))>=1,(7,+2)+71;. (1.72)

Here we notice that once more a compilation arises when dealing with
orthogonal algebras in an even number of dimensions, since often these
algebras have two Casimir Operators of order two. The two operators in
such a case are distinguished by placing a bar over the second operator.

We give the eigenvalues of this operator as

<C(SO(4))>=1,(7,+1). (1.73)
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Table 1.6: Eigenvalues of some Casimir Operators of Lie Algebras

(lachello and Arima, 1987):

Algebra Labels Order Eigenvalues

U(n) [f1f2 f3 oo fol )
> fL(fi+n+1-2i0)

n

su(n) [ff2 fo - O] 2 YA(f-f1n)(f;+2n-2i-f In)]

i=l

n

SO(2n+1) [f1fo fa oo fol 2 > LS +2n+1-2i)

s0(2n) [f1f2 fo o ful 2 D Si(fi+2n-2i)

Sp(2n) [fufo fo oo ful 2 > f(f+2n+2-2i)

i=1

1.11 Inception of Lie Algebraic Method in Modern Physics:
In the development of science, symmetry may be regarded as an
extremely important concept (lachello, 2004). From the both purely
theoretical and computational viewpoints, the use of symmetry in physics
and other related areas is widely recognized. It may be mentioned here
that the word, symmetry does not necessarily have a geometric meaning
when applied in modern physics. Also it should be noted here that
symmetries beyond geometric ones appeared and started to demonstrate
their usefulness after the introduction of quantum mechanics in the first
part of the 20th Century. Beauty of symmetry is its connection to a

possible invariance in a physical system. Such invariance of a physical




INTRODUCTION | 49

system leads directly to conserved quantities, which allow one to observe
specific degeneracies in the energy spectrum and to introduce a
meaningful labeling scheme for the corresponding eigenstates in a
quantum mechanical framework.

To deal with the symmetry arguments, group theory is
regarded as the most suitable tool. The continuous Lie groups and
algebras are powerful mathematical techniques, particularly for
addressing quantum mechanical problems embedded in a group
theoretical framework. The matrix or algebraic formulation of quantum
mechanics is already successful to show its greater suitability compared
with the differential or wave formulation, at least in regard to matters
inherent in symmetry problems. The use of Lie algebras in a systematic
fashion was first introduced in the 1930’s. Weyl, Wigner, Racah and
others are the pioneer workers in this field. In particular, point and
translation group theory played a fundamental role in solid-state physics,
while continuous groups, especially unitary groups, were shown to be
invaluable in studies related to nuclear and particle physics.

Interacting boson model, the highest expression of group
theoretical methods in nuclear physics was introduced for even-even
nuclei in 1974 (lachello and Arima, 1974) and later the same was
extended to more complex nuclear systems. Interacting boson model is
important for its unprecedented power in describing virtually any kind of
experimental situation in nuclear physics. We should note that the
interacting boson model is the first example of a comprehensive
theoretical model based on a dynamical symmetry environment. Details
of dynamical symmetries in connection with molecular spectroscopy are
discussed by many authors (Levine and Cooper, 1991; lachello and Levine,
1995; Oss, 1996). A Hamiltonian is said to have a dynamical symmetry
when its eigenvalues are an analytical function of the quantum numbers.
An example of the latter is the finite Dunham-like expansion of the

vibrational term values up to second order in the vibrational quantum
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numbers, as given in reference (Dunham, 1932). The important point in a
dynamical symmetry is that such an expansion can be derived from a
Hamiltonian. For example, such a symmetry for triatomic molecules can
be derived on the basis of an U(4) ® U(4) Lie group. We must be clear
about the point that a dynamical symmetry is but an approximation. Even
we care to make it mainly for two primary reasons, one related with
dynamics and the other with spectroscopy. The time-domain reason is
the remarkable accuracy of the results provided by dynamical symmetry.
For many molecules, the temporal evolution as predicted by dynamical
symmetry is accurate for tens or even hundreds of vibrational periods. As
the total energy increases, this will become less the case. Even so, it
appears remarkable that in the range of the highest overtones currently
accessible to direct excitation, the time evolution is regular for such a
long time. It is known that there is no contradiction between the utility of
dynamical symmetry in the time domain and its limited accuracy in the
frequency domain. The same is best understood in terms of the time
dependent approach to spectroscopy. This implies that the spectrum is
generated via the time propagation of the nonstationary wave packet
created at time zero. Highly resolved spectral details reflect long
propagation times. The range of this “long” is determined by the
magnitude of h = 5.31 ps cm™ or, in reduced units, by the typical stretch
or bend frequencies which frequently exceed 10° cm™. Hence an rms
accuracy of 10 cm™, not very satisfactory in the frequency domain, is
sufficient to follow the molecule over many vibrational periods. An
interesting implication of the validity of the dynamical symmetry over
many vibrational period is the separation of time scales in the exploration
of phase space. The second motivation for considering dynamical
symmetry is that it provides a zero order or “deperturbed” set of states.
We then can introduce perturbations, and one advantage of the algebraic
approach is that this can be done in a systematic fashion. These

perturbations can be related to “resonance coupling” of anharmonic,
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uncoupled oscillators via a semi classical analysis. This provides a
connection to the application of nonlinear mechanics to spectroscopy.
Algebraic effort is utilized to ensure that zero order dynamical symmetry
corresponds to anharmonic oscillators. For this reason, we see that in
algebraic method an SU(2) group is used for each one-dimensional
oscillator and an SU(4) group is used for each three-dimensional oscillator
. We can describe a pair of coupled harmonic oscillator with a single SU(2)
group. No doubt that this leads to a simpler zero order basis but the
characteristic effects of nonlinear mechanics then arise only from the
perturbations. A familiar example of a resonance coupling is the Fermi
resonance. In reference it has been shown regarding how to include this
coupling by breaking the dynamical symmetry. As a result of the coupling,
only the quantum number (2vi+v,+2v3) is conserved, while the individual
stretch (v1, v3) and bend (v,) quantum numbers are not. It should be
noted that for non bending (v, = 0) molecules, this coupling is the familiar
with Darling-Dennison 2:2 resonance between the two stretch modes.
Other types of resonances (example, 2:3 resonance) also can be
described in an algebraic approach. It may be noted here that dynamical
symmetries constitute a big step forward over a conventional use of
symmetry arguments, especially those concerning the description and
classification of energy spectra denoting specific degeneracy patterns. For
a simple understanding one may think that the amount of information
gained in going from a degeneracy symmetry to a dynamical one is similar
to that obtained in going from a static to a dynamical study of forces
acting in a conventional mechanical system. We should note here that
dynamical symmetries contain within themselves both the degeneracy
aspects of a physical system and the complete machinery for describing
transitions among different states (that is, the dynamical behavior of the
physical object at issue). In the extremely compact and convenient
framework of Lie groups and algebras all these tasks can be carried out

well. The use of group theoretical tools very often allows us to address
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situations inaccessible by means of conventional methods of quantum
mechanics.

It may be noted here that the interacting boson model is a
beautiful example of how to specialize, the algebraic, second-quantized
formulation of quantum mechanics from the aforementioned viewpoint.
Such specialization involves recognizing, within the commutation
relations of the creation and annihilation operators, certain Lie algebraic
structures and to limit the choice of such operators within specific
(invariant) bilinear forms. The existing mathematical apparatus
concerning Lie algebras, tensor calculus, and related topics (such as the
Wigner-Eckart theorem) is typically applied, in the case of nuclear physics
and the interacting boson model, to the building block of the problem at
issue, namely an object with five internal degrees of freedom (i.e. an
electric quadrupole). Observable quantities like excitation spectra and
transition probabilities are then obtained in terms of boson operators,
whose transformation properties are closely connected with specific
abstract symmetries. This type of boson operators are the algebraic
version of both the monopole and quadrupole pairing character of the
strong interaction between identical nuclear particles.

Very soon, the above mentioned strategy was applied in the
world of molecules. First of all, in the last part of the 20th century, the
algebraic models were introduced as a computational tool for the analysis
and interpretation of experimental rovibrational spectral of small and
medium-sized molecules (Wulfman, 1979; Levine and Wulfman, 1979;
lachello, 1981; lachello and Levine,1982; Roosmalen,1982; lachello and
Levine, 1995; lachello and Oss, 1991, 1996; Oss, 1996). The algebraic
models are based on the idea of dynamic symmetry, which, in turn, is
expressed through the language of unitary Lie algebras. With the
application of these algebraic techniques, one obtains an effective
Hamiltonian operator that conveniently describes the rovibrational

degrees of freedom of the physical system. In this framework, any specific
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1.12

mechanism relevant for the correct characterization of the molecular
dynamics and spectroscopy can be accounted. The important point to be
noted here is that the algebraic models contain the same physical
information for both ab initio theories (based on the solution of the
Schrédinger equation) and semiempirical approaches (making use of
phenomenological expansions in powers of appropriate quantum
numbers). Compared with that of interacting boson model, it may be
seen that the only difference between nuclei and molecules from the
viewpoint of the building blocks used is that when dealing with
molecules, one has to start with a diatomic unit. This is equivalent to that
of considering boson operators related to the dipole character of the
diatom. Consequently, a different dynamical symmetry (of smaller
dimension than that of used in nuclear physics) is adopted in the
description of molecular systems. It may be noted here that based on its
firm footing, the algebraic techniques, at present can demonstrate their
suitability to address successfully even quite difficult situations of
molecular spectroscopy. It is also already confirmed that the algebraic
techniques offer a concrete and complementary technique to

conventional approaches.

The Lie Algebraic Method and the Role of Algebraic Method:

The Lie Algebraic Method:

In order to have a review of the Lie algebraic methods within the context
of molecular spectroscopy, we start with the following brief description of
it. The Lie algebraic methods have been useful in the study of problems in
physics, especially after the development of quantum mechanics in the
first part of the 20" century. The reason is, quantum mechanics makes
use of commutators [x, px] = h which are the defining ingredients of Lie
algebras. And hence often it is termed that the essence of the algebraic

methods can be traced to the Heisenberg’s formulation of quantum
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mechanics (Heisenberg, 1925). Let us consider a quantum mechanical

problem in one-dimension with the Hamiltonian

n d
H=——=_4V 1.74
Py (x) (1.74)

Instead of solving the differential equation H¥(x ) = E¥(x ) directly, let us

consider the case of a harmonic oscillator potential
2
V(x)=hkx" /2 (1.75)

and introduce creation and annihilation operators

af—i[x_ij
NG} dx )

(1.76)

1 d j
a=—|x+—
2 dx
Along with a vacuum state |0) . The Hamiltonian for the harmonic oscillator

now may be written as

H=hw[a%+%j (1.77)
with eigenvalues

E(n):ha)(n+%j, n=0,1,. ... ,oC (1.78)

and eigenstates

0). (1.79)

| n> _ # (aT)n
The Harmonic frequency w is given by

o= (k/m)". (1.80)
For a generic potential, let us now expand V( x ) in power of x

V(x)= Zkl.x" (1.81)

that is, in power of a',a,a’a and diagonalize it in the spacen=0, 1, 2, ......,

N.
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The algebra formed with the set of four operatorsa’,a,a’a, 1 is called the
Heisenberg-Weyl algebra H(2) (the identity 1 commutes with all operators)
and has its commutation relation as
[a, aT] =1; [a,afa] =a; [a*,a*a] =da' (1.82)

The method where the Hamiltonian operator is expanded in powers of
operators of H(2) is called algebraic harmonic analysis (Kellman, 1995). All
manipulations are done here algebraically rather than using differential
operators. This is the most important advantage of the method. The
matrix elements of the operators, a', a are the key ingredients here in the
algebraic manipulations. The matrix elements of the operators, a', a
(called step up and step down operators) are given by

aT|n>:\/n?|n+l>;a|n>:\/;|n—l> (1.83)
This is all we need to calculate any observable within the framework of
harmonic analysis. It is known to us that molecular potentials often
deviate considerably from a harmonic potential. As a result, the expansion
of V(x) contains many parameters and the basis in which the
diagonalization is done needs to be taken very large i.e. N > .
We can overcome this difficulty by considering other solvable potential
functions which contain anharmonicity from the beginning. A function of

this type is the Morse function

2
V(x)=V, [1 —exp{—a(x — X, )}} (1.84)
With the help of a series of transformations, the Schrodinger equation
with a Morse potential (Figure 1.6) can be written in terms of an algebra

composed of four operators F., F_, F,, N satisfying commutation relations
[F,,F |=2F; [F,,F.]=%F, (1.85)

(The operator N commutes with all elements).
The four operators, as cited above, form a Lie algebra, called U(2), while
the three operators F, , F_, F, form a Lie algebra, called SU(2), isomorphic

to the angular momentum algebra and hence called quasi-spin algebra.
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Fig. 1.6: The Morse potential and its approximation with a harmonic

oscillator potential.

When written in terms of these operators, the Hamiltonian for the Morse

oscillator takes the simple form
H=E +AF’ (1.86)
Let us now introduce the vibrational quantum number n related to the
eigenvalue M of F, by v= (N — m)/2. The eigenvalues of H, in this situation,
can be written as
E(W)=E,+ AN> —4A(Nv—?),

N N-1
e ' > 5

(N even or odd) (1.87)

also the eigen function can be written as | N,v).

Now we are in a position to write the expression for the

energy levels in the familiar form

2
E(v)=ho, (V+%)—ha)exe (V+%J (1.88)
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This represents an anharmonic oscillator with quadratic anharmonicities.
The algebra U(2) now provides a framework for performing algebraic
anharmonic analysis. A generic potential can be expanded in terms of
quasi-spin operators F., F_, F,. All we need are the matrix elements of the

step up and step down operators of SU(2) given by

FINV)=v(N=v+1)|N,v-1);
F|N,v)=J(N-v)(v+1)|N,v+1)

It may be noted here that for molecular potentials which are not very

(1.89)

different from Morse potential, the expansion converges very quickly, that
is, very few terms are needed to obtain an accurate description. The

harmonic limit also can be easily recovered from U(2) using a

. . 1 .
mathematical procedure called contraction n — 0. By renormalizing the

N . .
operators F, and F_ W|th7‘, their matrix elements go over those of the

harmonic oscillator in the limit N - o.

It should be noted here that the Morse function is not the only
one that can be used to provide a basis for anharmonic analysis. The
Poschl-Teller function (Figure.1.7) is another function of interest in
molecular physics, especially for bending vibrations. The P&schl-Teller
function, associated with the Lie algebra U(2) is given by
4

Vos———5—
cosh” ax

X

(1.90)

It may be noted here that the algebraic method can be applied to
problems in any number of dimensions, in particular two and three
dimensions where harmonic analysis is done in terms of the Weyl-
Heisenberg algebras H(3) and H(4), and anharmonic analysis in terms of

the Lie algebras U(3) and U(4).
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Fig. 1.7 : The Péschl-Teller potential.

The Role of Algebraic method:

The Lie algebraic formulation discussed above can be used to study

problems of relevance in physics and chemistry. Particularly, in case of

molecules, the formulation can be used to analyze vibrational and

rotational spectra. Electronic spectra also can be interpreted with the

algebraic model. However, the field in which the algebraic method has had

most impact is that of vibrational spectroscopy. To deal with the

vibrational spectroscopy, following are the important advantages of the

algebraic method:

(a)

(b)

In the energy spectra, from the very beginning anharmonicities

are put in.

In the interactions between different modes, anharmonicities

are introduced automatically since they are already contained in

the matrix elements of the step operators.

The Lie algebraic methods allow us to calculate wave functions

and thus observables other than energies, such as intensities of

transitions (infrared, Raman, Franck-Condon).

In vibrational spectroscopy, anharmonicities play a very

important role. This is the reason why the algebraic methods

have found their most useful application here.
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1.13.

Vibrational Spectroscopy and The Lie Algebraic Method:

To discuss the vibrational spectroscopy within the context of the Lie
algebraic methods, it is convenient to divide molecules according to their
size. We denote molecules with N = 2 to 4 atoms as ‘small molecules’,
molecules with N = 5 to 100 atoms as ‘medium-size molecules’, and

molecules with N > 100 atoms as ‘macromolecules’.

Small Molecules:

The coordinate system chosen is an important aspect in the study of
molecules. In the study of small molecules, the best set for vibrational
analysis is provided by the internal coordinates. For a molecule, if N is the
number of atoms, the number of internal coordinates is 3N — 6. In case the
molecule is linear, there are 3N — 5 internal coordinates. The Lie algebraic
method as applied to the vibrational spectroscopy of small molecules
consists in quantizing each internal degree of freedom with the algebra of
U(2). For a set of n coupled one-dimensional degrees of freedom, the
Hamiltonian is then written in terms of the quasi-spin operators F.;, F_;,
F,i for each degree of freedom i. Here a Hamiltonian often used is (lachello
and Oss, 1991)

itz itz z,j +it =, =T+,
i<j=1 i<j=1

n ) n n
H=E+Y AF +Y B'F F. +Y B(F F +F [ ) (1.91)
i=1
In this Hamiltonian, the first term represents a set of n uncoupled
anharmonic oscillators and the additional terms represent coupling
between the modes. One can see here that apart from some over all
constant, this Hamiltonian is the anharmonic version of the coupled

harmonic oscillator Hamiltonian

n n n

— T root T i i

H=F,+ E Aa/a; + E B'alaaa; + E B,(a/a; +aa; (1.92)
i=1 i<j=l1 i<j=1
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It may be noted here that any one of the above Hamiltonians (1.91 or
1.92) can be obtained from the other simply by a simple substitution.

For the linear molecules showing bending vibrations, the motion
occurs in a plane perpendicular to the axis of the molecule, that is in two
dimensions (Figure. 1.8). Therefore these vibrations are quantized with the
algebra of U(3). This algebra i.e. U(3) is composed of nine operators. In
case of linear molecules, we thus have one U(2) for each stretching
vibration and one U(3) for each bending vibration. The Hamiltonian
operator is expanded here in terms of the four operators of U(2) and the

nine operators of U(3).

Fig. 1.8 : Bending Vibrations in polyatomic molecules (linear)

Recently this scheme has been used to study the bent and linear
molecules. For bent triatomic molecules (SO,, S,0) there are three one-
dimensional degrees of freedom, quantized with U(2) x U(2) x U(2). In case
of linear triatomic molecules (CO,) there are two one-dimensional
stretching modes and one two dimensional bending mode, U(2) x U(2) x
U(3). In a similar fashion, we have for linear four-atomic molecules (C,H)
(Oss and Temsamani, 1998), U(2) x U(2) x U(2) x U(3) x U(3). It has been
possible to extract the algebraic parameters by fitting the experimental
energy levels. In the usual harmonic analysis these parameters play the

role of the force-field constants.
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For small molecules now let us see the results obtained so far.
First of all, we consider the usefulness of the Lie algebraic methods and its
comparison with that of usual harmonic analysis. For this, let us consider
the Figure 1.9. In this figure the r.m.s. deviation for CO, is shown against
the number of basis states (Sako et. al., 2000).The curve ‘algebraic’ notes
the anharmonic analysis and the curve ‘conventional’ denotes the usual
harmonic analysis. From this figure the convergence properties are very
much clear. It is known that for CO, there are strong Fermi resonances
between the double bending vibration and the symmetric stretch. From
Figure.1.9 we note that for CO, the conventional analysis requires at least
1500 basis states to converge to a good r.m.s. deviation, whereas the
algebraic analysis has already converged with less than 1000 states. The
another important point of the algebraic method is its ability to calculate
vibrational energies to very high quantum numbers. This is feasible here
because we start from the beginning with an anharmonic basis. In this
basis perturbations and couplings are small. This can be seen in the study
of SO, where it has been possible to follow the vibrational states up to 20
quanta of vibration. The reliable calculation of highly excited states of
molecules makes us capable to answer several important queries. One of
the most important queries is on where and how the transition between
normal modes and local modes occurs and whether or not chaotic
properties emerge at some excitation energy. The analysis of SO, and H,0
shows that the transition from normal to local occurs in SO, at v = 18,
whereas in case of H,0 it occurs already at v = 2 (Sako et al., 2000) . Most
molecules with hydrogen bonds, in general, show local behavior for v 2 2,
although the much more complex dynamics observed in certain molecules
(e.g. CyH,) are also well described in the algebraic methods (Oss and

Temsamani, 1998; Jacobson et al., 1999).
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Fig. 1.9: Convergence properties of the algebraic method as

compared with the conventional method.

As already mentioned, one of the main advantages of the algebraic
method is that it permits a calculation of transition intensities (infrared,
Raman and Franck-Condon). In molecular spectroscopy intensities of
transitions have not been much used because of the fact that absolute
calibration is often difficult. At present this difficulty has been removed.
Recent experimental techniques are there which can extract transition
intensities. Definitely, this new advancement will provide an enormous
amount of information on the structure of molecules. To substantiate the
comment, the recent study of Franck-Condon intensities in S;0 may be
cited as an example (Muller et al., 1999). In Lie algebraic method, in the
study of transitions, we need a model of the transition operator. We need
a dipole moment function in the study of infrared transitions.

In case of usual harmonic analysis in one-dimension often this is

expanded in powers of the coordinate x

M(x)=>Y mx' (1.93)

Algebraically we write the above equation as

M :zmk(a+af)k (1.94)

k=0
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It may be noted that this dipole moment function also suffers from the
same problems of the potential function, that is, here also it becomes
difficult to include anharmonicities. The dipole function is expanded in Lie
algebraic method in terms of algebraic operators

M= m(F, +F)" (1.95)

k=0

In algebraic method the better form often used is
M =M,exp[a(F,+F.)] (1.96)

The algebraic method provides us a way to perform calculations of
transition intensities in which the anharmonicities are included from the
beginning both in the potential function and in the transition moment
function. Application of this technique has provided an excellent
description of 1000 Franck-Condon intensities in S;0. This technique has
made it possible also to extract information on the wave functions of both
the upper and lower electronic manifold and information of the extent to
which non-Condon effects play a role in these transitions (lachello et al.,

2000).

Medium-size Molecules:

A convenient set of coordinates is provided by the local coordinates for
medium size molecules. It may be noted here that this is in contrast to that
of small molecules. For local coordinates we have the advantage to write
the Hamiltonian operator in a simple form. However, local coordinates
have the disadvantage that the spurious coordinates associated with
overall transitions and rotations must be removed. We must note that for
medium-size molecules, discrete symmetries also play a major role. Due to
these two difficulties, medium-size molecules present a real challenge to
any calculation. To circumvent these difficulties several techniques have
been devised. To circumvent the first difficulty, a technique often used is
that of adding to the Hamiltonian a term proportional to the center of
mass coordinates and letting the coefficient of that term go to a large

value. In case the potential is harmonic, this removal of the center of mass
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motion is exact. In other cases it is only approximate and there is a small
error in the calculation of the vibrational modes which are admixed with
the center of mass motion. In the study of benzene CgHg, successfully the
technique has been used (lachello and Oss, 1993). To circumvent the
second difficulty, we can construct symmetry adapted states and
operators. Already several methods have been used to sort out this
problem. The method introduced by Frank, Lemus and others has been
used to formulate algebraic models directly in terms of symmetry adapted
operators (Lemus and Frank, 1994; Perez-Bernal et al., 1997; Frank et al.,
1999). Another method introduced by Chen, has been used to calculate
vibrational states with up to v = 10 quanta of vibrations in octahedral
molecules (UFg) (Chen et al., 1996). In this area the algebraic methods are
found particularly useful since the conventional methods are found
difficult to apply here. The algebraic methods made it possible to analyze
several phenomena of particular importance in medium-size molecules,
the most important one is the question of vibrational energy

redistribution.

Macromolecules:

Local coordinates are the best choice for macromolecules. There is no
problem in removing the spurious center of mass motion since its role is
negligible when the overall mass of the molecule is large. Here the role of
discrete symmetries is also less prominent in comparison to that of
medium size molecules. Macromolecules till to be taken within the
framework of the algebraic methods. The information on vibrational
spectroscopy of these systems is also not fully acquired. Under such
circumstances, a joint venture of theoretical and experimental studies is
essential to have a deep understanding of the structure of

macromolecules.
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1.14. Plan of work:

The research work is organized into six chapters and brief

discussions are given below:

Chapter 1 gives general introduction of molecular spectroscopy and
different approaches of molecular spectroscopy. The chapter discusses
the concept of Groups, Lie Groups, Lie Algebras, Representations of Lie
Groups and Properties of Lie Algebras. It also presents the inception of Lie
Algebraic method in modern physics and its application to molecular

vibrational spectroscopy for polyatomic molecules.

Chapter 2 presents the formalism of Lie Algebraic theory of polyatomic
molecules. This chapter discusses the formalism of Lie Algebraic

methods to the concerned molecule Benzene.

Chapter 3 describes the study of vibrational spectra of Benzene using Lie
Algebraic method. It also presents the application of one dimensional
U(2) Lie Algebraic method for the analysis of vibrational spectra of
Benzene. In this chapter we have studied the stretching vibrational
spectra of Benzene and calculated several fundamental frequencies of

Benzene.

Chapter 4 presents the study of vibrational spectra of monomer and
dimer of Benzene using Lie Algebraic method. In this chapter a
comparative study of different fundamental frequencies (C-H stretch) of
monomer and dimer of Benzene is provided between observed

experimental and calculated fundamental frequencies.

Chapter 5 describes the study of vibrational spectra of
derivatives of Benzene, fluorobenzene, deuterated Benzene and Mono
deurerium substituted Benzene using Lie Algebraic method. In this
chapter we have made comparative study of calculated and experimental
fundamental frequencies of fluorobenzene, Deuterated Benzene and Mono

Deuterium substituted Benzene.

Chapter 6 gives the conclusion and prologue to the future.




