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Intramolecular Vibrational Spectra of Benzene
and Its Derivatives in CC, CH and CD Local
Mode Interaction

Surja Kumar Singha', Rupam Sen?*, Ashim Kalyan?, and Ramendu Bhattacharjee’

"Department of Physics, Assam University, Silchar 788011, Assam, India
2Department of Physics, Srikishan Sarda College, Hailakandi 788151, Assam, India

Lie algebraic method is based on the idea of dynamic symmetry, which can be expressed in terms of U(2) Lie
algebra. By applying algebraic approach, an effective Hamiltonian operator can be obtained which conveniently
describes the rovibrational degrees of freedom of benzene and its derivatives. Here, every CC, CH, CD bonds of
the molecule are replaced by a corresponding U(2) Lie algebra and finally the local Hamiltonian is constructed
considering the invariant Casimir and Majorana operators. The fundamental modes are then calculated using
this Hamiltonian to fit the results of the theoretical as well as experimental observations.

Keywords: Lie Algebra, Hamiltonian, Casimir and Majorana Operators, Benzene.

1. INTRODUCTION

The structure and dynamics of highly excited vibrational states of
polyatomic molecules is a subject of considerable current inter-
est. One of the queries in the study of the vibrational spectra of
polyatomic molecules is the determination of the normal modes
of vibration. For an N-atom molecule the number of these modes
is n =3N — 6 and under the Born-Oppenheimer approximation
each one can be described in terms of the displacements of all the
nuclei from their equilibrium positions in a given electronic state
of the molecule. In case of highly symmetric benzene molecule,
the overtone spectra of it and some of its isotopic derivatives
have been at the starting point of the interesting discussions of
intramolecular vibrational redistribution as visible in vibrational
spectra. This present work aims to present an algebraic model
of intramolecular vibrational spectra associated with local modes
CC, CH and CD interactions in benzene and compare the cal-
culated results with that of theoretical as well as experimental
approaches.!™

It is nearly 50 years since Ingold et al.* carried out the first
comprehensive study of the vibrational spectrum of benzene.
They measured the vapour and liquid infrared spectra of several
deuterium labeled benzenes. Their correlation of bands between
labeled molecules and careful comparison of vapor and liquid
frequencies allowed a vibrational analysis which in large part
still stands today. Mair and Hornig® then made a major con-
tribution to the early vibrational assignments by giving definite
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and plausible frequencies for the infrared and Raman forbidden
fundamentals.

Benzene has also been considered as a prototype molecule for
harmonic force-field calculations,®® local mode theory,”!! radi-
ation less transitions, high resolution electronic spectroscopy'>!4
and high resolution infrared and Raman spectroscopy.'>!® The
force-field calculations are available for in-plane and out-of-plane
modes of benzene and also for many substituted benzenes and
its derivatives. Moreover, there have been the advanced ab initio
studies of its harmonic and anharmonic potential functions.

The present work leads to the vibrational analysis of benzene
and two of its derivatives using Lie algebraic approach which
strongly relies on the traditional unitary group theory and hence
examine the interactions that account for the standard Fermi cou-
plings along with Casimir and Majorana couplings and their con-
sequences for fundamental and overtone spectra and dynamics.
Our work relies strictly on the normal mode analysis of benzene
carried out by Pulay et al.!” Our analysis follows the traditional
approach of the vibrational mode descriptions of Wilson used in
many papers on benzene spectra.'® Isotopically labeling benzene
causes the benzene (% ) modes to lose their identity due to alter-
ation of the kinetic energy term in the Hamiltonian. A quantita-
tive description of these modes can be obtained by expressing the
vibrational Hamiltonian of the heavy labeled benzenes in terms
of the normal coordinates of benzene. This expression involves
diagonal and off-diagonal terms by Casimir and Majorana opera-
tors which provide a quantitative description of the normal modes
of benzenes molecules and its derivatives.

doi:10.1166/qm.2014.1143 1
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2. U(2) ALGEBRAIC MODEL

The Lie algebraic methods have been useful in the study of
problems in physics at the end of the 19th century and espe-
cially after the development of quantum mechanics in the last
part of the 20th century. In the last few years, Lie algebraic
method has been introduced as a computational tool for the
analysis and interpretation of experimental rovibrational spectra
of small and medium-size molecules.!®*?* This method is based
on the idea of dynamic symmetry, which, in turn, is expressed
through the language of Lie algebras. By applying algebraic
techniques, one obtains an effective Hamiltonian operator that
conveniently describes the ro-vibrational degrees of freedom of
a physical system. Within this framework, any specific mech-
anism relevant to the correct characterization of the molecular
dynamics and spectroscopy can be accounted for. The algebraic
methods are formulated in such a way that they contain the
same physical information of both ab initio theories (based on
the solution of the Schrodinger equation) and of semiempirical
approaches (making use of phenomenological expansions in pow-
ers of appropriate quantum numbers). However, by employing
the powerful method of group theory, the results can be obtained
in a more rapid and straightforward way.

Tachello, Arima®"?* and Wulfman?*?* have played a signif-
icant role in the algebraic approach to molecules. Wulfman is
the pioneer who reported on the algebraic approach to molecules
(the approach to the Morse oscillator) in 1979. Later, in 1981
Iachello used Lie algebraic methods in a systematic study of
the spectra of molecules (the vibron model). This introduction
was based on the second quantization of the Schrodinger equa-
tion with a three-dimensional Morse potential and described
the rotation-vibration spectra of diatomic molecules and poly-
atomic molecules.”>?% Using Lie algebraic method, Sarkar and
Karumuri?’—° reported better results for the vibrational energy
levels of HCN, HCCF, HCCD, SnBr,, Cu[TPP], Cu[TPP]* than
those reported earlier. Moreover, The U(2) algebraic model was
also particularly successful in explain separately the stretching
and bending vibrations of polyatomic molecules such as octahe-
dral, benzene and pyrrole-like molecules.’!:32 Recently, we have
reported the vibrational spectra of polyatomic fullerenes Cg,, C4
and Cgy>>34 using Lie algebraic method. As such, the approach
is particularly appropriate for many challenges of modern spec-
troscopy, hence in this paper we used the U(2) algebraic model
to study some of the vibrational spectra of benzene and two
of its derivatives and at the same time try to confirm that the
U(2) Algebraic model stands itself as an alternative approach
to the traditional Dunham expansion and potential approach for
polyatomic molecules. In potential approach, the interpretation
of experimental data by solving Schrodinger equation with inter-
atomic potentials becomes increasingly difficult as the number of
atoms in the molecule increases, whereas, in Dunham expansion
no Hamitonian operator is available and in this expansion for large
polyatomic molecules, one needs a large number of parameters to
obtain by fitting large experimental data base, which is not always
available. The Dunham expansion can be readily obtained as

E(v)=w, <v+%>—w(,xe (v—i—%) (1)

where w, and w,x, are the spectroscopic constants. This above
expansion does not contain any information about the wave func-
tion of individual states. Thus, the matrix elements of operators
can not be calculated directly.

2
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To construct the Hamiltonian operator in the algebraic frame-
work in n dimensional harmonic oscillator one has to replace
the usual x; and p; space coordinates with differential quantum
operators x;, —ihd/dx; (i =1,...,n). This corresponds to the
algebraic realization which is obtained in terms of a second quan-
tization by replacing the differential space-momentum operators
with creation and annihilation operators. For a harmonic oscilla-
tor the followings are the rules of replacement

x;+0/0x; o Xx;—0/0x;

a; = > 4= @)

V2 V2

By virtue of the quantum nature, both the operators x; and p;

satisfy certain commutation relations, which contain within them-

selves the specific aspects of the physical interaction between

particles, lead to a set of precise commutation relations of the
operators a; and a;.

The following expression representing the Hamiltonian opera-
tor, in terms of the operators a; and a,T

n n
H=N+ 5 where the number operator N = X:aia,T 3)
i=1
Considering the larger degeneracy and dynamical groups, the
algebraic Hamiltonian operator can be written in terms of n?
annihilation—creation operators a; and a'j‘f (i,j=1,...,n). Thus
it can be easily shown that,

[H,aa,]=0 (4)

These commutation relations are an unequivocal sign of sym-
metry for the Hamiltonian operator, H. Such symmetry is made
clear through a detailed study of group theoretical properties of
the bilinear forms a}a_,-‘ In proper expansion over bilinear forms
of (boson) creation and annihilation operators, the Hamiltonian
operator can still be represented. The general rule is that one has
to introduce a set of (n+ 1)? boson operators b; and b; (i,j=
1,...,n+1) satisfying the commutation relations .

(b, b1 =3, [ b1 =[b],b]1=0 5)

ij? i
The algebraic (second-quantized) version Hamiltonian operator
now can be written as

H :Eo‘f'zeij?bj‘f' Z fijhkb:b;bhbk'i_"' (6)
ij ij,hk
This expression includes terms up to two body interactions. The
algebraic Hamiltonian (Eq. (3)) of the (n-dimensional) harmonic
oscillator is, of course a special case of Eq. (6). One observes
that it is possible to arrange the above Hamiltonian in the frame-
work of a dynamical algebra by explicitly introducing the bilinear
products ,
G,=blb;, i, j=1,....n+1 (7
where the operators G satisfy the commutation relations
[Gi/-, th] = G 6, — G,;6;, and hence representing the unitary
algebra U(n+ 1). Now, it is possible to write the Hamiltonian
operator in terms of the generators
H=Ey+) ¢;Gi+ 2 fimGuGu+- ®)
ij i.j.h.k
In this situation it is worthy to notice that the algebraic Hamil-
tonian (Eq. (6)) expressed in terms of elements of U(n+ 1),
is completely general and holds for any n-dimensional problem.
This means that the dynamical group for any three dimensional
problem is U(4), while for any one-dimensional situation the
dynamical group is U(2). In Eq. (8) the basic idea is to choose
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the parameters e;;, fj. - - - in such away that only certain opera-
tors of the sub-algebras of the dynamical algebras are taken into
account. As a matter of fact, if one includes in this expansion
only the invariant or Casimir operators of the sub-algebras, the
Hamiltonian operator can be written as

H=E,+AC+A'C'+A"C"+--- ©)

In which the C’s are invariant operators of the subalgebras
G’,G", ... of the dynamical algebra G. Starting from U(2), we
introduces two dynamical symmetries, (a) and (b) corresponding
to the chains

@ U@>oU) (10)
(b) U(2) 2 0(2) (11
chain (a) is characterized by the following algebraic ket:
U)o u(l)
>wheren:N,N—1,...0 (12)
N n

By virtue of the boson character of the algebraic realization of
U(2), one just has to use symmetric irreducible representations
of the algebra. Similarly, the chain (b) is characterized by the

following algebraic ket:
U(2)>U(1)
v >wherem::|:N,:|:N—2,...,:|:1 or0 (13)

m

Based on both the chains, the dynamical symmetric Hamiltonian
operator has the following form:

a 1 2
H = Ey+e,Chy +e,Ch0 (14)
1) @
HY = Ey+ A, Chyy + A,C50) (15)

The eigenvalues of those Hamiltonian operator using chain (a)

and chain (b) are
E@(n)=Ey+en+en®, where n=N,N—1,...0 (16)

E®(m)=Ey+ A m+A,m?,

m==+N,£N-2,...,£10r0 (17)

where,

Interesting situation arises when we chose A, =0, A=A, #0
in Egs. (15) and (17), it is now possible to put the spectrum in a
one-to-one correspondence with the bound state spectrum of the
one dimensional Morse potential. This can be done by choosing
in Eq. (17) only the positive branch of the quantum number m.

Correspondingly we obtain,
E®(m)=Ey+Am*, m=N,N-2,....,10r0 (18)

Now one can easily recognize the Morse spectrum by introducing
the usual vibrational quantum number

Nom o Mo N2ty dd) (19
=——=0,1,..., —or —— (N even or o
T 2" 2
Using the function of v, Eq. (18) becomes
E® (v) = Ey+ A(N —2v)> = ey — 4Av(N —v), where
ey = E,+ AN? (20)

Comparing Eq. (20) directly with the Dunham expansion
(Eq. (1)), we obtain,

) X W, X
e e e’ve
eo———(l——), A=——-,

1
N=—-1 21
5 > 2n
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We generalize the U(n+ 1) algebra for N interacting oscilla-
tors, the corresponding product is

U,2)0U,2)®---@Uy(2) (22)

Consequently the algebraic Hamiltonian for N uncoupled anhar-
monic oscillators, based on the U(2) D O(2) dynamic symmetry,
will be given by

N
2
Huncoupled = Z AfCU,')(z) (23)

i=1
We also introduce the algebraic local basis

my,my...myy, m;=N;,N,—=2,..., i=1,...N (24)

or, equivalently, the local vibrational basis

v, v,...0y), v, =0,1,2..., i=1,...,N (25)

In the above basis, the eigenvalues can be computed according
to Eq. (20)

N
Euncoupled(vl LERRE) UN) =-—4 Z Aivi(lvi - Ui) (26)

i=1
The local basis as given by Eq. (25) can be arranged in
polyads, characterized by a well defined total vibrational number
Z,-N:1 v; = p. This means that within the same polyads i.e., for
given p, single basis states are expressed in terms of intergers
partitions of p in N parts. We now have to account for some type
of interaction among the local modes. In the N oscillator case,
we expect to deal with coupling terms involving pairs of oscilla-
tors; this is equivalent to considering algebraic lattices, starting
from the product as shown in Eq. (22), of the following types,

0,(2)®0,2)®---©0y(2)
0,(2)®0;(2)®---® Oy(2)

0132)®0,(2)®---®0y(2)
o 27)

Ov2)R0,2)®---®O0y_,(2)
and
U(2)@0U,12)®---®Uy(2)
Un(Q)®@Us(2)®--- Uy(2)

Us(2)@U,(2)®---®Uy(2)
o1 28)

UIN(Z) ® U2(2) ®--® UN—1(2)

Thus it leads to the following Hamiltonian operator for N
interacting oscillators,

N N N
H=E,+Y ACS,+ Y AijC((,?@)—i-Z)\i,-MU (29
i=1 i(j=1 i=1
Consider now a molecule with n bonds. In the algebraic model,
here each bond is replaced by the corresponding U(2) algebra.
Our concentration lies on the explicit problem of the construction
of a straightforward generalization of the Hamiltonian operator
for the benzene and its derivatives. According to the general
algebraic description for one-dimensional degrees of freedom,

3
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a dynamically-symmetric Hamiltonian operator for N interacting

(not necessarily equivalent) oscillators can be written as>34

n n n
H=Ey+) AC+) A;Ci+ ) AM, (30)
i=I i i
In this expression, one finds three different classes of effec-
tive contributions. The first one, Y. | A;C; is devoted to the
description of n independent, anharmonic sequences of vibra-
tional levels (associated with N independent, local oscillator) in
terms of the operators C;. The second one, }_}; A;;C;; leads to
cross-anharmonicities between pairs of distinct local oscillators
in terms of the operators C;;. The third one, 3_},; A;M;; describes
anharmonic, non-diagonal interactions involving pairs of local
oscillators in terms of the operators M;;. The C;, C;; operators are
invariant (Casimir) operators of certain Lie algebras, while the
M; are invariant (Majorana) operators associated with coupling
schemes, involving algebras, arising from a systematic study of
the algebraic formulation of the one-dimensional model for N
interacting oscillators. Our work relies on the local (uncoupled
oscillators) vibrational basis, which can be written as,

V) = |vvyvs...1,) (31)

In which the aforementioned operators have the following matrix
elements,

W Cilv) = —4v (N, —v,)
W Cylv) = =4, +v))(N;+N; — v, —v))

V' |M;|v) = (v,N;+v;N;—2v,v;)8 8,,;,,]

<V/‘Mij lv) = —[(v;+ 1)(Ni*Vi)Vj(Nj*Vj+1)]l/2 (32)
X8, ,0,

vi—V; V/+V/

V| M;; lv) = _[(Vj + 1)(Nj - Vj)V[(IVi v+ 1)]1/2

Here, in particular, the above expressions depend on the num-
bers N; popularly known as Vibron numbers (vibration rotation
quantum number). Such numbers have to be seen as prede-
termined parameters of well-defined physical meaning, as they
relate to the intrinsic anharmonicity of a single, uncoupled oscil-
lator through the simple relation.

3. HAMILTONIAN FOR CC, CH, CD BONDS
OF THE MOLECULES

Our significance lies on the quantization scheme of steching
vibrations in U(2) is rather different from U(4) and implies a
complete separation between rotations and vibrations. If this sep-
aration applies, one can identify each oscillator by means of an
algebra U(2) which leads the general form of Hamiltonian of the
concerned molecules, given by

6 6 6
H= ACDZCI'CD+A,CD Z Cij+ Z /\ijMij
=1 iGj=1 i(j=1

6 6 6 6
+Ace D CEC4 A D Cyt+ X AyMy+Acy Y CE!

i=1 i(j=1 i(j=1 i=1

6 6
+A X2 Gyt X AjMy (33)
i(j=1 i(j=1
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4. SYMMETRY PERSONALIZED
OPERATORS

In polyatomic molecules, the geometric point group symmetry
of the molecule plays an important role. States must transform
according to representations of the point symmetry group. In the
absence of the Majorana operators M,;, states are degenerate. The
introduction of the Majorana operators has two important contri-
butions: (1) it splits the degeneracies of figure and (2) in addition,
it generates states with the appropriate transformation properties
under the point group. In order to achieve this result the A;; must
be chosen in an appropriate way that reflects the geometric sym-
metry of the molecule. The total Majorana operator

s=y M, (34)

i<j

Considering the molecule benzene (C4Hy) and two of its deriva-
tives (i.e., C¢HsD, C4Dg) the Majorana Part of C—C is given by
the following matrix structure

NN+ AN+ —NX —N)”
—NX NQN +A"+ A7) —NX
—NX” —NX NQN + X +A")
—NA" —NA” —N\ +A")

0 —NA" —N)”

0 0 —NX"
—NA" 0 0
—N)” —NX” 0
—NX, —NA” —NA”

NN 42X+ A7) —NX —N)’
—NX NN+ N +X") —NX
—-N)' —NX NN+ +)")

(35)

Similarly for the interacting bond C—D and C—H, the respec-
tive matrix structures are given by

NN +A") —NX —NA”
—NAX' 2NN —NA (36)
—NX” 0 N(A”+ )
and
NN —NX
(37
—NX  NX

5. LOCAL TO NORMAL TRANSITION: THE
LOCALITY PARAMETER (¢§)

The local-to-normal transition is governed by the dimen-

sionless locality parameter (£). The local-to-normal transition

can be studied®—3® for polyatomic molecules, for which the

Hamiltonian is

H=H,, + /\ijMij =A,C+ Aijcij + )‘ijMiJ' (38)
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For these molecules, the locality parameters are

2 8\,
&= "tan”! [ J
T

| hi=123. 39
A,-+A,-,~] i (39)

corresponding to the number of bonds.

With this definition, considering the case of Child and
Halonen,* local mode molecules are near to the & = 0 limit,
normal mode molecules have & — 1.

6. RESULTS AND DISCUSSION

In the algebraic theory, we introduce the vibron number N which
is directly related to the anharmonicity of local CC, CH and
CD stretching bonds. The quantum numbers v; corresponds to
the number of quanta in each oscillator, while V is the total
vibrational quantum number given by

V=>"v (40)

For a particular polyad, the total vibrational quantum number is
always conserved.

The value of vibron number N for CiHy, C4Dg and C¢HsD
can be calculated by the following relation?’

No=-20 _k (k=1,2,3..) 1)
w, X

ee

where, o, and w,x, are the spectroscopic constants***! of poly-

atomic molecules of stretching interaction of the molecule con-
sidered. The value of N has to be taken as the initial guess.
Depending on the specific molecular structure one can expect a
change of 20% of the value of N.

The value of the parameter A can be obtained from the single-
oscillator fundamental mode as

E(v=1)=—4A(N—1) (42)

Lastly, one has to obtain an initial guess for the parameters A
and A’ of the Majorana operators, the role of which is to degen-
erate the local modes and the value of the parameters can be
calculated by considering the following matrix structure of the
molecules.

—4A(N —1)—4A'(2N — 1) —AN
+3A+A)N
—AN —4A(N —1)—4A'(2N —1)
+3A+ )N
—AN —AN
—AN —AN

Table I. Fitting algebraic parameters for CC, CD, CH bonds of benzene
(CsHs) and two of its derivatives (CgHsD, CgDg).

Bonds c—C CcC—D C—H
Vibron number Neghg =43 N copg =59 N cghsp =53
Algebraic parameters ~ Agc = —2.38 Acp=—1.49 Acy=-1.93
[em™]
Ac=-0.1056 A, =-0.1932 A, =-8.2986
A=3.21 A=2.00 A=1.87
N =0.81 N=043 N =0.61
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Table ll. Calculated and observed harmonic and fundamental frequen-
cies [cm~'] of benzene (CgHg).

Mode Dobs Vobs — Veal Mode
[Wilson No.] Symmetry [Ref. 1] Veal Vobs — Veal character
1 A, 993.1 9954 -23 Breathing
2 A, 3073.9 3069.8 4.1 CH stretch in-phase
3 A, 1350.0 1338.7 11.3 CH bend In-phase
12 B, 1010.0 1002.7 7.3 CCC trigonal bend
13 B, 3057.0 3055.2 1.8 CH trigonal stretch
14 B, 1309.4 1309.5 —0.1 CC stretch
15 B, 1149.7 11371 12.6 CH trigonal bend
6 E, 608.1  608.3 -0.2 CCC bend
7 E, 3056.7 3047.9 8.8 CH stretch
8 E, 1601.0 1600.2 0.8 CC stretch
9 E, 1177.8 1167.8 10.0 CH bend
18 E, 1038.3 1033.4 4.9 CH bend
19 E; 1484.0 1480.4 3.6 CC stretch
20 E, 3064.4 3062.5 1.9 CH stretch
1 A, 674.0 6755 -1.5 CH wagg.in-phase
4 B, 707.0 7047 23 CCCC puckering
5 B, 990.0 988.1 1.9 CH trigonal wagg
10 E, 847.1  839.1 8.0 CH wagg
16 E, 398.0 399.4 -1.4 CCCC torsion
17 E, 967.0  966.2 0.8 CH wagg
—AN —AN
—AN —AN
—4A(N—1)—4A'(2N —1) —AN
+3(A+A)N
—AN —4A(N —1)—4A' (2N —1)

+3(A+ )N
(43)

To obtain an initial guess for the parameter A and A’, we comprise
the following relations from above matrix equation,*

a=Bh (44)
2N
and E—E,
N=—— (45)
6N
Table lll. Calculated and observed harmonic and fundamental frequen-
cies [cm~'] of benzene derivative C¢Ds.
Mode s Mode
[Wilson No.] Symmetry [Ref. 2] Veal Vops — Veal character
1 A, 945.0 9472 22 Breathing
3 A, 1059.0 1061.8 —2.8 CCH(D)wagg
12 B, 970.0 9780 -8.0 CCC trigonal bend
14 B, 1282.0 12824 0.4 CC stretch
15 B, 824.0 82538 -1.8 CCH(D) trigonal wagg
6 E, 580.0 5812 —1.2 CCC bend
8 (5 1557.0 1556.0 1.0 CC stretch
9 E, 869.0 8788 —98 CCH(D) wagg
18 E, 814.0 8104 3.6 CCH(D) wagg
19 E, 1333.0 1344.0 -11.0 CC stretch
11 A, 496.0 4974 14 CCH(D) wagg
4 B, 599.0 596.6 2.4 CCC puckering
5 B, 829.0 830.3 -1.3 CCH(D) trigonal wagg
10 E, 660.0 6650 —5.0 CCH(D) wagg
16 (5 345.0 3452 02 CCC bend
17 E, 787.0 779.6 7.4 CCH(D) wagg




RESEARCH ARTICLE

Table IV. Calculated and observed harmonic and fundamental frequen-
cies [cm~"] of benzene derivative C5H5D.

Mode Vobs

[Wilson No.] Symmetry [Ref. 3] 7 Pops — Veal Mode character

16 A, 401.0 4024 —1.4  CCC out-of plane bending
1 B, 596.7 596.4 0.3 CH out-of plane bending
6 Ay 600.0 6004 04 CCC in-plane bending
4 B, 692.6 6938 —1.2 CCC puckering

10 A, 838.4 8379 0.5 CH out-of plane bending
17 B, 919.7 916.3 34 CH out-of plane bending
1 A, 971.8 966.7 5.1 ring breathing

5 B, 983.0 9853 -23 CH out-of plane bending
12 A, 992.1 1003.1 —-11.0 CCC trigonal bending
18 A, 1028.6 1025.5 3.1 CC stretching

15 B, 1163.3 11655 —-2.2 CH in-plane bending
9 A, 1176.1 1176.7 —0.6 CH in-plane bending
14 B, 1292.6 1285.9 6.7 CC stretching
3 B, 1329.7 1325.0 4.7 CH in-plane bending
19 A, 1470.7 14735 -2.8 CH in-plane bending
8 Ay 1599.7 1599.5 0.2 CC stretching
13 A, 2271.9 2270.5 1.4 CD stretching
2 A, 3053.8 3057.8 —4.0 CH stretching
7 A, 3071.8 3069.2 26 CH stretching
20 A, 3090.8 30914 -0.6 CH stretching

By using a numerical fitting procedure (in a least square sense)
one can adjust the values of the parameters N, A, A, A’ and A’
to fit the experimental result.

The fitting algebraic parameters used in the study of vibra-
tional spectra of benzene and two of its derivatives are given
in Table I, where, Tables II-IV show the calculated frequencies
of benzene and two of its derivatives with the corresponding
deviations considering the different theoretical and experimental
perspectives.

7. CONCLUSIONS

In this work we have studied the stretching vibrational spectra
of benzene and two of its derivatives by the algebraic model
considering coupled one dimensional Morse oscillators describ-
ing the CC, CH, and CD stretching and bending vibrations of
the molecules. This study shows that the Algebraic model is an
alternative approach of other theoretical and experimental mod-
els. More interestingly, the hurdle of complicated integrations
in the solution of coupled differential Schrédinger equations of
polyatomic molecules can be avoided by making use of this alge-
braic model. Moreover the number of parameters in this case is
also much less as compared to the traditional Dunham expan-
sion calculations. So with the further advancement of this U(2)
algebraic model, the other modes of vibrations of the molecules
also can be explained and predicted for the interest of further
experimental study. Thus, it can be concluded that U(2) algebraic
method is one of the successful alternative theoretical approach to

Quantum Matter 3, 1-6, 2014

explore the previously unknown vibrational states of polyatomic
molecules.
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Successful Applications of Lie
Algebraic Model to Analyze
the Vibrational Spectra

of Fluorobenzene
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The article is aimed at calculating the stretching vibrational spectra of fluorobenzene
(C¢H5F) using one-dimensional algebraic model. The Model Hamiltonian so constructed
which seems to describe the C-C, C-F C-H, H-F stretching modes accurately using a
relatively small set of well-defined parameters.

Key Words: algebraic model, fluorobenzene, Hamiltonian, vibrational spectra

INTRODUCTION

Spectroscopic investigation of fundamental and overtone transitions of stretch-
ing modes of benzene and its partially substituted derivatives are an important
source of information on intramolecular vibrational redistribution (IVR) pro-
cesses. These investigation processes include I.R spectroscopy (1,2), FTIR and
Raman Spectra, DFT, and SQMFT (3,4). At the same time, many theoretical
approaches including quantum chemical calculation as well as semi-empirical
programs have been attempted by several researchers (4,5). In spite of rigorous
studies by all these techniques on these molecules have given insight several
aspects many other aspects require further theoretical explanation. In this
article, we used an alternative approach (algebraic approach) to describe the
vibrational spectra of molecules like fluorobenzene. In the last two decades,
algebraic models, such as Lie algebraic methods (5,6) and boson-realization
model (7), have been proposed for the description of vibrations, rotations, and
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Table 1: Fitting algebraic parameters of fluorobenzene (C¢HsF)
_________________________________________________________________________________________________________|

Vibron number Algebraic parameters (cm~')
N A A A
49.52 —30.43 0.05 0.376

rotation—vibration interactions in polyatomic molecules. In the Lie algebraic
approach, U(4) and U(2) algebraic models have been extensively used (7). The
U(4) model deals with the rotation and the vibration simultaneously but it be-
comes quite complicated when the number of atoms in a molecule are more
than four. The U(2) model was particularly successful in explaining stretching
vibration of diatomic and polyatomic molecules such as benzene (7).

In this article, we use the U(2) algebraic model to calculate the normal
fundamental and overtone modes of vibrations of fluorobenzene and hence find
the accuracy of the results with respect to the experimental observations (1,2).

THE ALGEBRAIC MODEL

A complete description of the theoretical foundations is needed to formulate
the algebraic model for a vibrating molecule. We apply the one-dimensional al-
gebraic model, consisting of a formal replacement of the interatomic, bond co-
ordinates with unitary algebras. To say it differently, the second-quantization
picture suited to describe anharmonic vibrational modes is specialized through
an extended use of Lie group theory and dynamical symmetries. By means of
this formalism, one can attain algebraic expressions for eigenvalues and eigen-
vectors of even complex Hamiltonian operators, including inter-mode coupling
terms as well as expectation values of any operator of interest (such as elec-
tric dipole and quadrupole interactions). Algebraic models are not abd initio
methods, as the Hamiltonian operator depends on a certain number of a pri-
ori undetermined parameters. As a consequence, algebraic techniques can be
more convincingly compared with semi-empirical approaches making use of
expansions over power and products of vibrational quantum numbers, such
as a Dunham-like series. However, two noticeable advantages of algebraic ex-
pansions over conventional ones are that (i) algebraic modes lead to a (local)
Hamiltonian formulation of the physical problem at issue (thus permitting a
direct calculation of eigenvectors in this same local basis) and (ii) algebraic ex-
pansions are intrinsically anharmonic at their zero-order approximation. This
fact allows one to reduce drastically the number of arbitrary parameters in
comparison to harmonic series, especially when facing medium- or large-size
molecules. However, it also should be noticed that, as a possible drawback of
purely local Hamiltonian formulations (either algebraic or not) compared with
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traditional perturbative approaches, the actual eigenvectors of the physical
system. Yet, for very local situations, the aforementioned disadvantage is not
a serious one. A further point of importance here is found in the ease of ac-
counting for proper symmetry adaptation of vibrational wave functions. This
can be of great help in the systematic study of highly excited overtones of not-
so small molecules, such as the present one. Last but not least, the local mode
picture of a molecule is enhanced from the very beginning within the algebraic
framework. This is an aspect perfectly lined up with the current tendencies of
privileging local over normal mode pictures in the description of most topical
situations.

THE ALGEBRAIC HAMILTONIAN

According to the general algebraic description for one-dimensional degrees of
freedom, a dynamically symmetric Hamiltonian operator for n interacting (not
necessarily equivalent) oscillators of a polyatomic molecule in terms of Morse
anharmonic oscillators by introducing the U(2) algebra for each bonds can be
written as (8-12):

n n n
H=Eo+Y AC+)Y AiCj+) rMy, (1

i=1 ifj ilj

Table 2: Calculated and experimental normal fundamental frequencies (cm~') of
fluorobenzene (CgHsF)

Normal e
fundomental level Bete (1) e Dets — Vo [rasaal  100%
W 3047.9 3048.17 —027 0.008%
v 3060.3 3058.15 2.15 0.071%
Vs 3061.3 3062.25 —0.95 0.031%
va 3067.3 3067.10 0.20 0.001%
Vs 3069.6 3068.45 1.15 0.037%
Ve 3070.6 3071.33 ~0.73 0.023%
v, 3076.0 3075.24 0.76 0.024%
v 3079.1 3078.20 0.90 0.029%
Vo 3079.4 3079.56 ~0.16 0.005%
et 3080. 1 3081.69 ~1.59 0.051%
vy 3084.9 3083.17 1.73 0.056%
Vig 3090.3 3089.58 —0.72 0.023%
Vrs 3094.0 3094.55 —0.55 0.017%
vig 3104.0 3102.85 1.15 0.037%
Vrg 3109.6 3108.22 1.38 0.44%
Vg 3111.0 3112.36 ~1.36 0.043%
iy 3112.1 3113.20 ~1.10 0.035%

A (RMS) = 1.12cm~",
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Table 3: Calculated and experimental normal overtone frequencies (cm~") of
fluorobenzene (C¢HsF)
... ]|

Normall o
Overtone level Degs (2) Ve Veps — Vet |"°"§;""| x 100%
Y 5905.80 5906.20 —0.40 0.007%
vy 5920.70 5921.05 -0.35 0.006%
V3 5943.10 5943.43 —-0.33 0.005%
Vg 5949.30 5950.96 —1.66 0.027%
Vs 5956.90 5958.49 -1.59 0.026%
Vo 5968.50 5966.23 227 0.038%
vy 5974.10 5973.34 0.76 0.012%
vg 5983.70 5981.08 2.62 0.043%
Vo 5991.40 5988.40 3.00 0.050%
VIg 5997.10 5995.72 1.38 0.023%
ay 6003.10 6003.04 0.06 0.001%
vi2 6005.90 6003.25 2.65 0.044%
Vi3 6011.60 6010.57 1.03 0.017%
Vig 6018.80 6018.10 0.70 0.011%

ARMS). = 1.95cm1.

where C;,C;, and M; are the invariant algebraic operators. In the local basis
the operators C; are the diagonal matrix with eigenvalues
(N7, v; |Ci| Ny, v;) = —4 (Nyo; — v7). (2)

The couplings between the bonds are introduced by the operators C; and
Mj;, called Casimir and Majorana operators, respectively. The role of the Majo-
rana operators M; is to introduce off-diagonal couplings between pairs of local
modes. In the simplest case of equivalent interacting bonds, the Majorana op-
erator naturally leads to a solution for symmetrized coupled modes, in which
the invariance of the Hamiltonian operator, under bond exchange, is explic-
itly taken into account. A rather appealing feature of this algebraic model is
that such a “symmetrizing” property of the Majorana operator, actually quite
a trivial one for two equal bonds, can readily be extended to any molecular ge-
ometry, even a very complex one. The key point is that the basic information
characterizing the specific molecular geometry can easily be incorporated by
introducing proper linear combinations of Majorana operators.

In purely local limit of N oscillators, these oscillators are somehow corre-
lated with each other through the Cjoperators, which account for (diagonal)
cross-anharmonicities, represented by the following equation:

C; C;
Cy‘ZCi—Nij(]vi-I—]V;), 3)

where Nj = N; + N;
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Furthermore, following Eq. (3), it should be noted that one basically subtracts
from C; those terms arising from uncoupled single-oscillator contributions. In
the special case of a pair of equivalent oscillators i and j(IV; = N;), the above
equation can be replaced by the following matrix elements:

(Uil}j |Cy | vivj) = —4(Ui — U )2 (4)

i.e., the matrix elements do not depend on N;(N;). As a result, C; will ac-
count for different contributions throughout different polyads and within the
same polyad; the most important aspect of C; is the dependence of its matrix
elements on the product v;v;.

The quantum numbers v; correspond to the number of quanta in each os-
cillator while V is the total vibrational quantum number given by

V: Xn:vi. (5)
=1

For a particular polyad, the total vibrational quantum number is always con-
served.
In Eq. (1), the invariant Casimir (Cj;) and Majorana (M) operators have
the following matrix elements (9,10):
N v NG v | Cy| N Ny ) = =4 [ (014 07) (N ) = (054 07)]
(N, vi;Nj, vj |[M | Niovis Ny, vy) = viNj + v N; — 2v0;
(N;, vi + 1;N;, v; — 1|Mj| N;, vi; Nj, vj)
= /o @i+ DA —v) + (N — vy +1)
(N;, v; = 1;Nj, v; + 1 |My| N;, vi; N, vj)
= — o (0 + 1) () — 1) + @ —vi + 1),

L ©)

Thus, the eigenvalues of the Hamiltonian can be easily evaluated and provide
a description of n coupled anharmonic vibrators.

RESULTS AND DISCUSSIONS

In general, the eigenvalue problem for H must be solved analytically with spec-
trum generating algebra or dynamical algebra which describes, within a cer-
tain approximation, realistic rotation-vibration spectra in one (stretch) and
three dimensions (stretch and bend). As the dynamical algebra can be incor-
porated by the language of Lie algebra and thus after the introduction of U(2)
Lie algebra to describe n stretching bonds, two possible chains of molecular
dynamical groups of fluorobenzene are as (11-13):

UM2)® ....... ® U 2) > 0'(2)®....® 0"(2) D 0(2), (7
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UM2)®....@ UY2) D UQ2) D> 02), (8)

which correspond to local and normal coupling, respectively. The coupling to
final O(2) group in the first chain is carried out though different intermediate
couplings O¥ (2) and the second chain arises from all the possible couplings of
U (2) groups to obtain a total U(2) group, which in turn contains the final O(2)
group.

To find the vibrational frequencies of fluorobenzene, we use the algebraic
parameters A, A’, i, )/, and N, to study the vibrational spectra of fluorobenzene
molecules where N is the vibron number. After considering the common cou-
pled and uncoupled bond-bond interaction in the molecular configuration in
case of fluorobenzene and also considering the Majorana couplings, on the ba-
sis of the symmetry of the molecules, the numbers of algebraic parameters are
reduced to four. In this regard, one should note that this is the unique beauty
of the algebraic model where one needs only a fewer parameters to describe
the vibrational spectra of a molecule with a good accuracy.

The values of Vibron number (N) can be determined by the relation

[OR . 1
N; = -3G=1,2...... e = ——— |, 9
WeXe @ ) [x N+ 2] ©)

whereand w,x.are the spectroscopic constants.

For fluorobenzene molecules in normal mode, we can have the values of w,
and w,x, for each bond from the study of Nakamoto (14) and that of Huber and
Herzberg (15). Using the values of w.and w.x.for each bond, we can have the
initial guess for the value of the vibron number N. It may be noted here that in
the algebraic approach, there is provision to change (not more than +20%) the
value of N to get better accuracy. This is equivalent to change the single-bond
anharmonicity according to the specific molecular environment, in which it can
be slightly different.

To obtain a starting guess for the parameter A we use the expression for
the single-oscillator normal mode which is given as

Ev=1)=—-4AWN-1). (10)
Using Eq. (16), A can be obtained as
Ey
A=————. 11
4N-1) (D

To obtain the initial guess for A, whose role is to split the initially degener-
ate local modes, placed here at the common value E, used in Eq. (17). Following
the simple Hamiltonian matrix structure (Eq. (18)) leads to finding out the cor-
responding algebraic parameters:

—4AN-1)—-4A’2N-1)+AN —AN 12)
—AN —4AN-1) —-4A'CQN -1 +iN )’
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From the above matrix structure, we easily find that

_E;—E;

A
2N

(13)

and for hyperfine splitting of the spectrum, the corresponding algebraic
parameter is

_Ey-E

N
6N

(19

To achieve the better results, a numerical fitting procedure (in a least-
square sense) is required to obtain the parameters A, A’ A, and )/, as given by
Eqgs. (11), (13), and (14). Initial guess for A7 may be taken as zero.

The following tables show the fitting algebraic parameters along with the
results based on experimental (opto-thermal spectrum) (1,2) and calculated vi-
brational transitions of normal fundamental and overtone modes of fluoroben-
zene are compared.

CONCLUSION

In this article, using the one-dimensional U(2) algebraic model, we calculate
the number of fundamental and overtone frequencies of fluorobenzene which
is one of the derivative of benzene molecule. It is revealed from our study that
compared to other traditional approaches, the algebraic models require only a
fewer data for the analysis of a system. All these data can be obtained from the
database (observed energy levels). The calculated RMS deviations suggested
the accuracy of the algebraic model.

For the systematic study of problems in Chemical Physics, algebraic mod-
els have provided a new tool. Using this model many molecular systems have
been analyzed in the last 30 years. In the coming years the model may be ap-
plied in the analysis of larger and more complex systems like macromolecules:
polymers. In the algebraic model, anharmonicities in the energy spectra are
put in from the very beginning. This is the main advantage of the model. An-
harmonicities play important role in other physical systems like liquids and
surfaces. Applications of the algebraic models may be extended to cover these
situations in coming days. The basic idea in the algebraic model is to simplify
the analysis of a complex system using the powerful mathematical methods.
This property may help the researchers to expand the applications of the alge-
braic models in the analysis of floppy molecules, macromolecules, and polymers
including biomolecules and biopolymers in the near future.
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