Chapter 2
Light scattering theory: Polarization

In this Chapter, a brief account on fundamentals of polarization theory has been
put forth. It begins with a note on history of polarization discovery and acceptance
of transverse-wave nature of light (electromagnetic wave), after which, a detailed

derivation of polarization theory has been given.

2.1 Briefing polarization

Polarization generally just means “orientation” . It comes from the Greek word
“polos” for the axis of a spinning globe. Wave polarization occurs for vector
fields. For electromagnetic waves, the vectors are the orthogonal electric and mag-
netic fields which vibrate in directions perpendicular to the direction of propaga-
tion of wave. Polarization of light (electromagnetic waves) is a property of waves
that describes the orientation of their oscillations. By convention, the polarization
of light is described by specifying the orientation of the wave’s electric field at a
point in space over one period of the oscillation and the polarization is perpen-
dicular to the wave’s direction of travel. The electric field may be oriented in a
single direction (linear polarization), or it may rotate as the wave travels (circular
or elliptical polarization). The details will be discussed in section 2.4. In general,
most of the light sources emit unpolarized light (with electric and magnetic field
vectors in random directions), but there are several ways (reflection, selective ab-

sorption, double refraction, cyclotron and synchrotron emission) by which light
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gets polarized. Scattering of light through a media is one of the ways by which
polarization occurs. Light scattered from cometary dust is usually partially polar-
ized. The polarization of the scattered radiation is an important observation which
can give information on the nature, shape, structure and sizes of the constituent

particles.

2.2 Historical note

The investigations of polarized light began with the discovery of the phenomenon
of double refraction in calcite crystals (calspar) by Erasmus Bartholinus (1625-
1698) in 1669. This was followed by the work of Christian Huygens (1629-1695,
founder of wave theory of light), who interpreted double refraction by assuming
that in the calspar crystal there is a secondary ellipsoidal wave in addition to the
primary spherical wave. In the course of his investigations in 1690, Huygens also
discovered that each of the two rays arising from refraction by calcite can be extin-
guished by passing it through a second calcite crystal if the latter crystal is rotated
about the direction of the ray. Christian Huygens was the first to suggest that light
was not a scalar quantity based on his work on the propagation of light through
crystals. Isaac Newton (1642-1727, founder of corpuscular theory of light) inter-
preted these phenomena by assuming that the rays have “sides” . After a long
time, in 1808, Etienne-Louis Malus (1775-1812), observed that the two images
obtained by double refraction through a calspar crystal were extinguished alter-
nately as he rotated the calcite crystal. Malus reported this result but offered no
explanation. In 1812, Sir David Brewster (1781-1868) discovered that at a par-
ticular angle of incidence (Brewster’s angle) the reflected light viewed through a
calcite crystal could be extinguished. Further investigations by Brewster revealed
that there was a simple relation between what was to be called the Brewster angle
and the refractive index of the glass. The significance of Brewster’s discovery was
immediately recognized by his contemporaries.

In Newton’s time, scientists were familiar only with longitudinal waves from
their work on the propagation of sound; and it was believed that light “waves”, if
they existed, were similar to sound waves. Thus, during the eighteenth century the

corpuscular theory of light supported by Newton held sway. But the “transversal-
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ity” of wave, appeared due to discovery of polarization became a serious objec-
tion to the acceptance of the wave theory formulated by Huygens. However, due
to Thomas Young (1773-1829), Augustin Jean Fresnel (1788-1827), Dominique
Francois Arago (1786-1853) and others’ work to solve the problem of interference
and diffraction by the use of wave theory gave new life to it. The wave theory was
further enhanced when it was used to describe the propagation of polarized light
through optically active media.

The wave equation appears in classical optics as a hypothesis. It was accepted
because it led to the understanding and description of the propagation, diffraction,
interference, and polarization of light. A complete foundation for the wave equa-
tion was laid by James Clerk Maxwell’s (1831-1879) electrodynamic theory and
its experimental confirmation by Heinrich Hertz (1857-1894) in the second half
of the nineteenth century.

([Bohren and Huffman, 2008], [Born and Wolf, 2000], [Goldstein, 2016])

2.3 Physical basis of polarization by scattering

Scattering of light by matter is one of the ways by which light gets polarized.
Light scattering is a common phenomenon happening in all media that contains
atoms. Matter is composed of discrete electric charges: electrons and protons.
When electromagnetic wave meets matter, its elecromagnetic field interacts with
the localized electromagnetic field of its constituents; which could be a single
electron, an atom or molecule, a solid or liquid particle. The electric charges in
the matter are set into oscillatory motion by the electric field of the incident wave.
Accelerated electric charges radiate electromagnetic energy in all directions. This
secondary radiation is called the radiation ‘scattered’ by the matter. This newly
generated scattered wave strikes neighboring atoms, forcing their electrons into
vibrations. These vibrating electrons produce another electromagnetic wave that
is once more radiated outward in all directions. In addition to reradiating elec-
tromagnetic energy, the excited elementary charges may transform part of the in-
cident electromagnetic energy into other forms (thermal energy, for example), a
process called absorption. Scattering and absorption are not mutually indepen-

dent processes. This absorption and reradiation of light waves causes the light to
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be scattered about the medium.

This scattering process leads to characteristic polarization (partial) of the scat-
tered light. There are a variety of scattering processes like Thomson scattering,
Compton scattering, Rayleigh scattering, fluorescence, or Raman scattering re-
gardless of the different underlying physical mechanisms. This scattered radia-
tion can be observed in any direction and varies with the physical properties of
the particle and the scattering direction.

([Bohren and Huffman, 2008], [Born and Wolf, 2000])

2.4 Wave equation

To discuss polarized light, we need to investigate first the wave equation and its
properties. We therefore begin our study of polarized light with the wave equation.
The macroscopic electromagnetic fields inside matter can be described by the

Maxwell equations [Jackson, 1999]

V.D(7,t) = p(Ft) (2.12)
V x E(F,t) = _9B(Y) (2.1b)
ot
V.B(F,t) =0 (2.1¢)
. . OD(F,t)

(2.1d)

where D is the electric displacement, E the electric field, B the magnetic in-
duction, H the magnetic field, p the macroscopic charge density, and J the macro-
scopic current density. From these equations, it is deduced that an electromagnetic
wave has orthogonal electric and magnetic fields associated with it, which vibrate
in directions perpendicular to the direction of propagation.

For time-harmonic (oscillating) plane monochromatic waves propagating in a
homogeneous, linear, isotropic, and non-absorbing medium, the electric (E) and
magnetic (FI ) fields are always in phase and oscillating in orthogonal directions

with respect to the direction of propagation and each other. The complex-field



CHAPTER 2. LIGHT SCATTERING THEORY: POLARIZATION 21

representation of the waves is

7 — wt) (2.2a)
H(7,t) = Hyexpi(k.7 — wt) (2.2b)

where 7 is the radius vector from an arbitrary origin, k the wave vector, and w
the angular frequency of the wave.

In discussion of polarization, it is customary to focus attention on the electric
field. The electric field of a sinusoidal electromagnetic wave can be decomposed
into orthogonal components, each component having an amplitude and a phase.
The phase, referred to a particular position or time tells what part of the cycle the
electric field is vibrating in.

In a Cartesian system the components of electric field are-

E,(7,t) = Eop expi(k.7 — wt + 6,) (2.3a)
E,(7\t) = Eoyexpi(k.7 — wt + 0,) (2.3b)
E.(F,t) = Eo, expi(k.7 — wt + 8.) (2.3¢)

If we take the direction of propagation of the wave in the z direction, then the

real part of electric field components in free space can be described by-

E.(z,t) = R{ZEo, expi(kz — wt + ,)} = T Ep, cos(T + 0,) (2.4a)
E,(z,t) = R{yEy, expi(kz — wt + 6,)} = gLy, cos(T + d,) (2.4b)

where Ey, and E, are the maximum amplitudes, and 6, and d,, are the phases,

respectively and 7 = kz — wt
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2.5 Optical polarization

As the field propagates, E,(z,t) and E,(z,t) give rise to a resultant vector. This
vector describes a locus of points in space, and the curve generated by those points
will now be derived.

In order to eliminate propagator 7 between the transverse components of the

optical field, we re-write the equations as-

E,
= cosTcos d, — sin 7sin d, (2.5a)
EO.I?
—% = cos Tcos §, — sin Tsin (2.5b)
Ey,
Hence,
E E
—sind, — —Lsind, = cos 7sin(d, — (2.6a)
EO:E Y E()y ( Yy )
E E
— cosd, — —2Lcosd, = sinTsin(d, — O, (2.6b)
EO:L‘ Yy E(]y ( Yy )

Squaring Eq. (2.6a) and (2.6b) and adding gives

E?2 E; E, E
Ty ¥ 2% Y cosd =sin’6 2.7

Egm + Egy Fow Foy cos sin .7

where 0 = 0, — 0,

Eq. (2.7) is recognized as the equation of an ellipse and shows that at any

instant of time the locus of points described by the optical field as it propagates
in space is an ellipse. This behavior is spoken of as optical polarization, and Eq.

(2.7) is called the polarization ellipse.

Linear polarization: When the two orthogonal components are in phase, i.e.
0 = 0°, the Eq. (2.7) is a straight line. The electric vector oscillates in a straight
line as it propagates in space with time. The wave is called linearly polarized.

Circular polarization: When the two orthogonal components have same am-
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Cc

Figure 2.1: Elliptically polarized wave and the polarization ellipse.

plitude (Ey, = Ey,) and the relative phase 0 = 90°, the Eq. (2.7) is a circle. The
electric vector oscillates (rotates) in a circle as it propagates in space with time.
The wave is called circularly polarized.

Elliptical polarization: In general, the two components of a electromagnetic
wave have arbitrary amplitude and phases. The resultant is the ellipse shown by
Eq. (2.7). The resultant electric vector propagates in space with time as an ellipse
and the wave is called elliptically polarized.

Partial polarization: Light is composed of an ensemble of electromagnetic
waves. A group of electromagnetic waves travelling in the same direction can
have some linearly polarized waves, some circularly polarized waves, and some
elliptically polarized waves. When they are combined, the resulting light can be
unpolarized, partially linearly polarized or partially elliptically polarized. Unpo-
larized light occurs when there are no fixed directions of electric field and also no
fixed phase relations between the two orthogonal field components. In general,
light is partially polarized and can be decomposed into unpolarized light and el-
liptically polarized light.

([Bohren and Huffman, 2008], [Born and Wolf, 2000], [Goldstein, 2016])
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2.6 Elliptical parameters of the polarization ellipse

A polarization ellipse is characterized by its ellipticity, the ratio of the length of its
semiminor axis to that of the semimajor axis, and its azimuth, the angle between
the semimajor axis and an arbitrary reference direction. Handedness, ellipticity,
azimuth, together with irradiance, are the elliptical or ellipsometric parameters of
a plane wave.

In general, the axes of the ellipse are not in the OX and OY directions. Eq.
(2.7) the presence of the “product” term F, I, shows that it is actually a rotated

ellipse; in the standard form of an ellipse the product term is not present.

Cr‘-n_....._
5

Figure 2.2: The rotated polarization ellipse.

In Fig. (2.2), the rotated ellipse has been shown. Let OX and OY be the initial,
unrotated axes, and let OX and OY’ be a new set of axes along the rotated ellipse.
Furthermore, let /(0 < ¢ < 7) be the angle between OX and the direction ox’

of the major axis.
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The components £, and £, are

E! = E,cost¢ + E,sin (2.8a)
E, = —E,sint + E, cos ¢ (2.8b)

If 2a and 2b (a > b) are the lengths of the major and minor axes, respectively,

then the equation of the ellipse in terms of OX and OY' can be written as

E! =acos(t +4) (2.9a)
E;, = +bsin(r +¢') (2.9b)

where 7 is the propagator and ¢’ is an arbitrary phase. The + sign describes
the two possible senses in which the end point of the field vector can describe the
ellipse.

Substituting Eq. (2.4a),(2.4b) and Eq. (2.92),(2.9b) in Eq. (2.8a),(2.8b) and

expanding the terms, we get

a(cosTcos§’ — sinTsin§') = Fo,(cos 7cos d, — sin 78in d, ) cos )+
Eo,(cos Tcos 6, — sinTsin ) sinyy (2.10a)
+b(sin Tcos &’ + cos Tsin §') = — Fy,(cos Tcos d, — sin 7sin d, ) sin ¢+

Eo,(cos Tcos 6, — sinTsin d,) cosp (2.10b)

Equating the coefficients of cos 7 and sin 7 leads to the following equations

acosd’ = Ey,cos 0,c08 1 + Eo,cos §,sin ¢ (2.11a)
asind’ = Eo,sin d,cos ) + Eg,sin d,sin ¢ (2.11b)
+bcos &' = Ey,sin d,sin ¢ — Eg,sin §,cos 1 (2.11¢)

+bsind’ = Ey,cos 0,80 ¢ — Eq,,cos §,c08 1) (2.11d)
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Squaring and adding Eq. (2.11a),(2.11b); also Eq. (2.11¢),(2.11d) and using

0 = 0, — 0, We get

a? = Egz cos® 1 + Egy sin 9 + 2Fy, oy cos 1sin icos 0 (2.12a)
b = ng sin® ¢ + Egy cos® 1) — 2Ey, Eoycos 1sincos o (2.12b)

Adding Eq. (2.12a) and (2.12b)

a’ + b = Ej, + Ep, (2.13)

Multiplying Eq. (2.11a) by (2.11¢) and Eq. (2.11b) by (2.11d) and adding

+ab = Ey, Eoysind (2.14)

Dividing Eq. (2.11d) by (2.11a) and Eq. (2.11c) by (2.11b) and adding

(B3, — Egy) sin 2¢ = 2E, Ey,cos dcos 29 (2.15)
2FEy, Foycos 0
tan2y = ————— (2.16)
E(%:r - Egy

This relates angle of rotation ) to Ey,, Ey, and ¢. It can be noted that, =0
3
2
It is useful to introduce an auxiliary angle a(0 < a < 7) for the polarization

only for 0=7 or < . Similarly, =0 only if Ey, or Ep, is equal to 0.
ellipse defined by

Ey,
t = 2.17
an o Fo, (2.17)

Using Eq. (2.17) in Eq. (2.16)

2Ep, Eoycosd  2tana
E, —E3,  1—tan’a

tan 2y = cos o (2.18)

tan 2¢) = (tan 2a)cos d (2.19)



CHAPTER 2. LIGHT SCATTERING THEORY: POLARIZATION 27

Thus for 6=0 or 7, we have ¢ = +a. For 6=F or 37”, we have =0, so the
angle of rotation is also 0.

Let us define the angle of ellipticity, x as
(2.20)

tany = £— where ——<x<
a

s
4

For linearly polarized light b=0, so x=0. For circularly polarized light b=a,
so x==xm/4. Thus, Eq. (2.21) describes the extremes of the ellipticity of the

I

polarization ellipse.
Using Eq. (2.13),(2.14),(2.17)

+2ab i 2E0$EOySiH(5
a?+ b B+ ER,

Using Eq. (2.20) in (2.21)

= sin 2as8in § (2.21)

sin 2y = (sin 2a)sin & (2.22)

This relates ellipticity of the polarization ellipse with parameters E,, F, and
0 of the polarization ellipse. For 6=F or 37“, Eq. (2.23) becomes y=t«
To summarize, the elliptical parameters Ey,, Ey, and 0 of the polarization el-

lipse are related to the orientation angle v and ellipticity angle y by the following

equations:

tan 21 = (tan 2a)cos d 0<¢y<m (2.23a)
sin 2y = sin 2asin § - % <y < %, 0<a< g (2.23b)
a’ + b = Ej, + Ep, (2.23¢c)

Ey
t = 2.23d
an « Fo, ( )

+b
tany = — (2.23e)

a

Elimination of the propagator between the transverse components of the opti-
cal field led to the polarization ellipse. Analysis of the polarization ellipse showed

that for special cases, it led to forms which can be interpreted as linearly polar-
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ized light and circularly polarized light. This description of light in terms of the
polarization ellipse is very useful because it enables us to describe by means of a
single equation various states of polarized light.

([Bohren and Huffman, 2008], [Born and Wolf, 2000], [Goldstein, 2016])

2.7 Stokes polarization parameters

Representation of light by polarization ellipse is inadequate for several reasons.
As the beam of light propagates through space, it forms polarization ellipse of
different shapes in a time interval of the order 10~'° sec. This period of time is
clearly too short to allow us to follow the tracing of the ellipse. Another seri-
ous limitation is that the polarization ellipse is only applicable to describing light
that is completely polarized (linear, circular or elliptical). In nature, light is very
often unpolarized or partially polarized. Thus, the polarization ellipse is an ideal-
ization of the true behavior of light; it is only correct at any given instant of time.
Moreover, although the elliptical parameters completely specify a monochromatic
wave of given frequency and are readily visualized, they are difficult to be mea-
sured directly (with the exception of irradiance, which can easily be measured
with a suitable detector) and are not adaptable to a discussion of partially polar-
ized light. The irradiance of two incoherently superposed beams are additive, but
no such additivity exists for the other three elliptical parameters. These limita-
tions force us to consider an alternative description of polarized light in which
only observed or measured quantities enter. ([Bohren and Huffman, 2008], [Born
and Wolf, 2000], [Goldstein, 2016])

In 1852, Sir George Gabriel Stokes (1819-1903) discovered that the polariza-
tion behavior could be described by four measurable quantities now known as the
Stokes polarization parameters. The first parameter expresses the total intensity of
the optical field. The remaining three parameters describe the polarization state.
Stokes formulated it in order to provide a suitable mathematical description of the
Fresnel-Arago interference laws (1818) based on experiments carried out with an
unpolarized light source. He also showed that his parameters could be applied not
only to unpolarized light but to partially polarized and completely polarized light
as well. ([Stokes, 1852], [Stokes, 1862])
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Unfortunately, Stokes’ paper was forgotten for nearly a century. Its impor-
tance was finally brought to the attention of the scientific community by the Nobel
laureate S. Chandrasekhar in 1947, who used the Stokes parameters to formulate
the radiative transfer equations for the scattering of partially polarized light. The
Stokes parameters have been a prominent part of the optical literature on polarized
light ever since. [Chandrasekhar, 1960]

2.8 Derivation of Stokes parameters

Let us consider a pair of plane waves (not necessarily monochromatic) that are or-

thogonal to each other at a point (say z=0) in space, represented by the equations:

E,(t) = Eo.(t) cos[T + 6,(t)] (2.24a)
E,(t) = Eo,(t) cos[T + d,(t)] (2.24b)

where E,(t) and E,(t) are the instantaneous amplitudes, w is the instantaneous
angular frequency, and J,.(¢) and 0, (t) are the instantaneous phase factors. At all
times the amplitudes and phase factors fluctuate slowly compared to the rapid
vibrations of the cosinusoids.

The explicit removal of the term wt between Eq. (2.24a),(2.24b) yields the
familiar polarization ellipse, which is valid, in general, only at a given instant of

time

Ei(t) B0 -2 Fa(t) Ey(t) cos d = sin® & (2.25)
ES (1) E§,(t)  Eox(t) Eoy(t)
where 6 = 0, — d,
For monochromatic radiation, the amplitudes and phases are constant for all
time, so Eq. (2.25) reduces to
EXt) | Ej(t) | E.(t) By(t)

-2 cosd = sin®§ (2.26)
ng Egy EO:c EOy

Where Ey,, Ey, and 0 are constants.
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In order to represent Eq. (2.26) in terms of observables of optical field, we
must take an average over the time of observation. Because it is a long period of
time relative to the time for a single oscillation, this time can be taken as infinite.

We write Eq. (2.26) as

<E(t)> <E;(t)> _<E,(t)E,t) >
z ——= 7Y cosd = sin® (2.27)
Egzr Egy EOfEO?I
where
. T
—00

0

Multiplying Eq. (2.27) by 4E2, E2

0y

AE; < EX(t) >+4Ej,< E2(t) >—8En, Eoy< E,(t)E,(t) > cos§ = (2Eo, Eo, sin6)?

(2.29)
Using Eq. (2.28), we find the average values as
2 1 2
< EI(t) >= §E0x (2.30a)
1
< Ej(t) >= §E§y (2.30b)
1
< E (t)Ey(t) >= §E0xE0y cos 0 (2.30¢)

Substituting Eq. (2.30a),(2.30b),(2.30c) in Eq. (2.29)

2E2 E2, + 2B2,E2, — (2Eo, Eo, cos 8)% = (2Ey, Eoy sin 6)? (2.31)
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Add and subtract the quantity (Eg, + E,)

(ES, + E5,)° — (Eg, — Ej,)? — (2EouEoy c0s6)® = (2B, Eoy sin6)®  (2.32)

We now write the quantities inside the parentheses as

Sy = Egz + Egy (2.33a)
S| = ng — Egy (2.33b)
52 = 2E0xE0y cos (233C)
Sg == 2E09:E0’y sin (5 (233d)
Eq. (2.32) takes the form,
Sg =57+ 55+ 535 (2.34)

It can be shown using Schwarz’s [Sopka, 1972] inequality that for any state of

polarized light the Stokes parameters always satisfy the relation

Sg = ST+ 53+ 53 (2.35)

The equality sign is valid for completely polarized light and inequality for
partially polarized light or unpolarized light.

In terms of orientation angle 1) and the ellipticity angle y of the polarization

ellipse
tan 2¢y) = & (2.36)
S
sin 2y = % (2.37)
So

The four equations (Eq. (2.33a),(2.33b),(2.33¢),(2.33d)) are the Stokes polar-
ization parameters for a plane wave introduced into optics by Sir George Gabriel

Stokes in 1852. The Stokes parameters are real quantities, and they are simply the
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observables of the polarization ellipse and, hence, the optical field.
Sy is the total intensity of the light.
S describes the amount of linear horizontal or vertical polarization.
S, describes the amount of linear +45° or —45° polarization.
S5 describes the amount of right or left circular polarization contained within

the beam.
([Bohren and Huffman, 2008], [Born and Wolf, 2000], [Goldstein, 2016])

2.9 Stokes parameters in complex form

To obtain the Stokes parameters of an optical beam, it is easier to take a time

average of the polarization ellipse in terms of complex amplitudes.

E.(t) = Egzexpli(wt + 0,)] = Eyexp(iwt) (2.38a)
E,(t) = Epyexpli(wt + d,)] = Ey exp(iwt) (2.38b)

where £, = Eyexp(id,)andE, = Eyexp(id,) are complex amplitudes.

The Stokes parameters for a plane wave are now obtained from the formulae-

So =< E,E; >+ < E,E, > (2.39a)
S1 =< E.E, >—- < EE; > (2.39b)
Sy =< E,E, >+ < E,E; > (2.39¢)
Sy =i(< E,E} > — < E,E} >) (2.39d)

([Bohren and Huffman, 2008], [Born and Wolf, 2000], [Goldstein, 2016])
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2.10 The Stokes vectors

The four Stokes parameters can be arranged in a column matrix and written as

So
S = 51 (2.40)
Sa

S3
The Eq. (2.40) is called the Stokes vector or Stokes column matrix. Mathe-

matically, it is not a vector, but through custom it is called a vector.

The Stokes vector for elliptically polarized light is then

Eg, + E3, <E,E;>+<E/E; >
E2 — E? < E,E*>—- < E,E* >
g 0z~ Loy | _ @ vy (2.41)
2FEy, Eo, cos 0 < EE; >+ <EE; >
2Ey, Eo, sin o i(< B By > — < B E; >)

Eq. (2.41) is also called the Stokes vector for a plane wave. The Stokes vectors
for linearly and circularly polarized light are readily found from (2.41).

Thus, the Stokes parameters are a logical consequence of the wave theory.
They give a complete description of any polarization state of light and those quan-
tities that are measured. Originally, the Stokes parameters were used only to de-
scribe the measured intensity and polarization state of the optical field. But by
forming the Stokes parameters in terms of a column matrix, the so-called Stokes
vector, we are led to a formulation in which we obtain not only measurable but
also observable, which can be seen in polarimetric experiments. As a result, the
formalism of the Stokes parameters is far more versatile than originally envisioned
and possesses a greater usefulness than is commonly known.

([Bohren and Huffman, 2008], [Born and Wolf, 2000], [Goldstein, 2016])
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2.11 Polarization in terms of Stokes parameters

The Stokes parameters enable us to describe the degree of polarization P for any
state of polarization. By definition,

I . 5«2 5«2 52 1/2
7pl:(1+ 2+ 3) 0§P§1 (2.42)
-[tot SO

where I, is the intensity of the sum of the polarization components and I

is the total intensity of the beam.
The value of P=1 corresponds to completely polarized light.
P=0 corresponds to unpolarized light.
And 0 < P < 1 corresponds to partially polarized light.
([Bohren and Huffman, 2008], [Born and Wolf, 2000], [Goldstein, 2016])



