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CHAPTER 3: COMPUTATIONAL TOOLS 

3.1. The WIEN2K code 

All the calculations presented in this work are performed using the WIEN2k 

software package developed by P. Blaha and K. Schwarz et al. [78] based on Full 

Potential Linearized Augmented Plane wave (FP-LAPW) method [79] for 

computation of the electronic structures of crystals (solids) within the Density 

Functional Theory (DFT). This method is one of the most accurate methods for 

estimation of the ground state properties of solids. 

The main advantages of this package (code) are that it is an all-electron and full-

potential method and performs investigation of properties which are sensitive to 

core electrons. Using this code, the simulation of a wide range of material's 

properties, such as structural, electronic, optical properties (elastic constants, 

NMR spectroscopy, X-Ray, XPS, EELS...) are also possible. Also a web interface 

is present which provides a clear guidance at each calculation levels. 

The basis set used in the WIEN2k code is the Linearized Augmented Plane Wave 

(LAPW). In this method the lattice is divided into non-overlapping spheres (called 

an atomic or muffin tin (MT) sphere) surrounding each atomic site and an 

interstitial region. Therefore two different types of basis sets are chosen for 

expressing the single particle wave functions. Inside the MT region, the basis 

function is a product of radial function and spherical harmonics  rYlm  

i.e.      rYEruBEruA lmllklmll
lm

klmk nnn
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                                                (3.1) 

where  ll Eru , is the regular solution of the radial Schroedinger equation for 

energy lE  and the spherical part of the potential inside sphere t;  ll Eru , is the 

energy derivative of lu evaluated at the same energy lE . A linear combination of 
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these two functions constitute the linearization of the radial functions; the 

coefficients lmA and lmB are functions of  nk  determined by requiring that this 

basis matches each plane wave the corresponding basis function of the interstitial 

region; lu  and lu  are obtained by numerical integration of the radial Schroedinger 

equation on a radial mesh inside the sphere. 

For the interstitial regions that are outside the MT sphere, the basis functions are 

expanded in plane waves. 

i.e. rik
k

n

n
e .1


                                                                                                (3.2) 

where nn Kkk  ; nK are the reciprocal lattice vectors and k is the wave vector 

inside the first Brillouin zone. Each plane wave is augmented by an atomic-like 

function in every atomic sphere. 

The solutions to the Kohn-Sham equations are expanded in this combined basis 

set of LAPW’s according to the linear variation method. 


n

knk n
c                                                                                                                                                          (3.3) 

And the coefficients cn are determined by the Rayleigh-Ritz variational principal. 

The convergence of this basis set is controlled by a cut off parameter RmtKmax=6-9, 

where Rmt is the smallest atomic sphere radius in the unit cell and Kmax is the 

magnitude of the largest K vector in equation (3.3).  

Two major parts are present in the program: the initialization, and the main self-

consistent field (SCF) cycle. Many analytical tools like band structure, density of 

states, charge densities, volume optimization, optical properties etc are 

implemented.  
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 In the initialisation part the nearest neighbours are calculated up to a specified 

distance and the atomic sphere radii. Overlapping spheres, coordination numbers 

and nearest neighbour distances are also checked.  It is also checked whether the 

equivalent atoms are really crystallographically equivalent and then calculates the 

point and space groups for the given structure. The space group symmetry 

operation is generated. The point group of the individual atomic sites are 

determined and generated for the lattice harmonics and local rotation matrices. 

The symmetry operations and the point groupsymmetry of the atoms (to compare 

them with the “International Tables for X-Ray Crystallography“) are then 

checked. The atomic valance densities are then generated. The k-mesh is 

generated in the Brillouin zone (BZ). Thus in the initialisation part an initial 

crystal density is obtained by superposition of atomic densities for the SCF cycle. 

The second part i.e. SCF cycle consists of five steps: 

1. LAPW0 which generates the potential from the density and construct the 

effective potential. 

2. LAPW1 which calculates the valance band i.e. the eigenvalues and 

eigenvectors by solving the Kohn Sham equation of valance electrons. 

3. LAPW2 which computes new valance densities from the eigenvectors. 

4. LCORE which computes the potential and the charge density of the core 

electrons, and 

5. LMIXER which mixes the electron densities of core, semi-core and valance 

states and generate new input density for the next iterations. 

In all the calculations, the number of k-points used for the integration part for 

both zinc blende and rock salt structure of III-V and II-VI compound 

semiconductors is 8000 k-points with 20*20*20 k mesh which is reduced to 256 

irreducible k-points inside the Brillion zone including five high symmetry points 
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W, L, Г, X and K. Convergence of the basis set is obtained at RMTKmax = 9.0 

where Kmax gives us the plane wave cut-off. The position of the of the first and 

second atom in ZB structure is taken to be (0,0,0) and (0.25,0.25,0.25) and in RS 

structure it is (0,0,0) and (0.5,0.5,0.5) respectively. 

3.2. Elastic constant code: Cubic Elastic 

The elastic constant calculations have been performed using the energy approach. 

In this method elastic constants were calculated by applying small strains to the 

unstrained lattice. 

For a cubic system only three independent elastic constants namely C11, C12 and 

C44 are present. Hence, a set of three sets of distortions are used to determine the 

three elastic constants.  For determining the C11 and C12 we use two types of 

distortion D1 and D2 

The first distortion is the orthorhombic distortion, 
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which gives us the energy, 

      42
121100,  OCCVEVE                                                            (3.5) 

The second distortion or strain is the volume cubic distortion,  
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The volume is expanded giving the energy, 
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The third distortion is the distortional monoclinic deformation which determines 

the C44, 
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which give us the energy, 
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The elastic constants are thus determined from the above three equations (3.5, 3.6, 

3.7). 

The elastic constants are calculated with the elastic package interfaced with 

WIEN2k as developed by Morteza Jamal [80]. The cubic elastic package is a set 

of programs and scripts that can calculate elastic tensor calculations for cubic 

phases (primitive, body-centred, or face centred) by using WIEN code. To run 

this program a valid cubic structure file should exist. This package generates 

WIEN input files simulating strained structures. It also generates scripts to make 

WIEN calculate these structures and analyse the results, plot them, and derive 

their elastic parameters. 

 

 

 


