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 CHAPTER 2: THEORETICAL METHODOLOGY 

The electrons and nuclei are the determining factor for understanding the 

properties of condensed matter and molecules. It provides us information about 

the electronic, optical, magnetic and bulk properties of the material.  An accurate 

determination of the electronic structure of the molecule is an important factor as 

it dominates the properties of the whole system. In the last few decades, 

experimentalist and theoreticians have been studying these properties for various 

scientific and technological applications. However due to complexity of the 

condensed matter systems, experimentally studying these properties under 

extreme conditions of pressures and temperature is tedious and difficult work. 

Theoretical study often provides a good understanding of the physics of the 

system under study, and it is often possible to interpolate or extrapolate these 

models in order to predict the behavior of systems under conditions not yet tested 

experimentally. Also developments in computational simulation have made it 

possible to study properties of materials from the first principle calculation with 

great accuracy.  Thus it enables the explanations and prediction of the materials 

properties which are difficult to study experimentally. Various electronic structure 

methods have been developed in the past and modern physics is always faced 

with a challenge to develop computational methods that will accurately treat the 

interacting system of many electrons and nuclei.  

2.1. Many body problem 

The behaviour of interacting electrons in a solid is very difficult to understand and 

is a tremendous task which can only be addressed partially. This is not due to 

purely theoretical reasons but also to numerical reasons. Computers have become 

more and more powerful allowing physicists to solve more and more complex 

problems. However, the interacting-electron problem has been known for more 

than 80 years and despite the advent of computers and supercomputers, this 

particular task is still out of reach. 
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Solving the many-body Schrodinger equation is the starting point for investigating 

the properties of a material but the number of particles that are involved and the 

coupling and interactions of the particles cause a problematic issue which can be 

overcome by using approximation methods. 

 

In a solid system, there are nuclei and electrons. For a solid, the Hamiltonian of 

the system of nuclei and electrons can be written as  
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where, H


 is the Hamiltonian for the system consisting of M nuclei and N 

electrons. The sum over A and B runs over the M nuclei while the sum over i and j 

run over the N electrons. MA and ZA are the mass and atomic number of Ath 

nucleus, riA is the distance with Ath nucleus and ith electron, rij represents the 

distance between ith and jth electrons, RAB is the distance between Ath and Bth 

nuclei. Atomic units in which  ћ = m = e =1, are used throughout the thesis work. 

The first term is the kinetic energy for the electrons and second term is for the 

nuclei. The last three terms represents the attractive electrostatic (coulomb) 

interaction between the electrons and the nuclei and repulsive potential due to the 

electrons and nucleus-nucleus interaction respectively. Solving this problem is 

impossible, therefore acceptable approximate eigenstates is found out by making 

approximations at three levels. 

2.2. Born-Oppenheimer approximation 

We know that nuclei are much heavier and slower than electrons; we can 

therefore freeze them at fixed points and assume that only electrons are moving. 

Now since the nuclei do not move anymore, the kinetic energy becomes zero and 

the potential energy due to nucleus-nucleus interactions become constant. Thus 

we are left with three terms: the kinetic energy of the electron, the potential due to 
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the electron-electron interaction and the potential energy of the electrons in the 

external potential of the nuclei. 

Now the above equation becomes  

 

                                                  (2.2) 

 

which can be formally written as  

              (2.3) 

where                                                                                                                    
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The kinetic and the electron-electron terms of the above equation (2.3) depends 

only on the fact that we are dealing with a many-electron system and are 

independent of the solid system. 

2.3. Density functional theory (DFT) 

The Hamiltonian obtained after Born-Oppenheimer approximation is much 

simpler than the original Hamiltonian. But it is still difficult to solve. There are 

several methods to reduce equation (2.3) to an approximation but tractable form. 

One important approximation is the Density Functional Theory (DFT). 

Density-functional theory (DFT) is one of the most widely used technique in 

condensed matter physics and quantum chemistry [53,54,55] employed to study 

the ground state properties calculation of atoms, molecules or solids. It is first 

principle theory of condensed matter physics for the electron-electron many-body 

problem through the introduction of an exchange-correlation term in the 
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functional of the electronic density. It is a very reliable theory for predicting new 

materials, to confirm experimental discoveries, or to provide explanation of new 

phenomena observed in experimental work.  

DFT is the quantum mechanical approach for solving the many electron system. It 

is based on the electronic density distribution rather than the many electron wave 

functions and transforms the many body system into a system of non-interacting 

fermions in an effective field called Kohn –Sham equation.   

The Density Functional Theory concept for atomic spheres was first introduced 

by Thomas and Fermi around 1927-1928 [56,57] with further improvements by 

Hartree [58], Dirac [59, 60], Fock [61] and Slater [62] but the formal 

establishment of DFT was given by Hohenberg and Kohn [63] in 1964.  

Hohenberg and Kohn gave two theorems mainly known as the Hohenberg-Kohn 

theorem. This theorem enables us to establish a unique correspondence between 

the external potential and ground state density. 

2.3.1. Hohenberg and Kohn theorem 

Theorem 1: The ground state electron density of a system determines the external 

potential Vext(r) (within a trivial additive constant). In other words there is one to one 

correspondence between the ground state density, ρ(r) and the external potential 

Vext (r). 
 

Theorem 2: The density that minimises the variational energy is the true ground 

state density for the external potential, extV  i.e. the total energy functional has a 

minimum equal to the ground state energy at the ground state density of the 

system.  

(The proofs of theorem 1 and theorem 2 are given in appendix B) 
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2.3.2. Kohn Sham Equation 

In 1965 Kohn-Sham gave a proposal which reduced the long task of dealing with 

many particle Schodinger equation for real system to a relatively easy to solve set 

of one particle equations of a virtual system [64]. 

Hohenberg and Kohn proved that the ground state energy can be written as a 

unique functional of the electron density. 

Therefore the total energy of an interacting system is 

        extee EETE            (2.4) 

Now we can consider a virtual system of non-interacting electron system of same 

density ρ having the same energy functional E[ρ] with the original system, then 

rearranging the terms, we can write as 

               S Hartree ext S ee HartreeE T E E T T E E                   (2.5)                                           

 where Ts[ρ] is the non-interacting kinetic energy corresponding to density ρ. The 

kinetic energy functional T[ρ] has been replaced by the non-interacting kinetic 

energy term Ts[ρ]. 

EHatree[ρ] is the Hatree energy which is the usual classical coulomb interaction as 

a functional of density ρ. Therefore the energy functional remains the same. The 

first three terms in the above expression are the major terms quantitatively and 

can be treated exactly. 

The last term, 

     S CT T E   
 ;

     ee Hatree XE E E   
 

             S ee Hartree C X XCT T E E E E E           
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 is called exchange correlation energy. 

It is about 10% of the total energy. Therefore an approximation of reasonable 

accuracy is acceptable for this part as far as energy calculation is concerned. It is 

this part which draws most of the attention of DFT researchers. 

Now the kinetic energy functional of the non-interacting electron system Ts[ρ] is 

expressed as, 

      SSST 2

2

1
                                                                             (2.6) 

where S  is Slater determinant formed from single particle orbitals si ' . It is 

given as, 
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The ground state electron density is then given by  

    2


i

i rr                                                                                                   (2.8) 

Thus,  
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Minimising the above expression for energy with respect to the orbital’s and using 

the condition  
2

1k r dr   we get, 
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This equation is DFT counterpart of Schrodinger equation and is known as the 

Kohn-Sham equation. Here k ’s are the Kohn-Sham orbital’s and k ’s enter into 

the equation as Lagrange undetermined multiplier and are the Kohn-Sham orbital 

energies. extv  and XCv are respectively, external potential and the exchange 

correlation potential.  

Total energy of the system is also expressed as, 
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The Kohn-Sham calculation proceeds as follows. At first we start with an initial 

density ρ(r) and solve the Kohn-Sham equation self-consistently to generate a set 

of Kohn-Sham orbitals from which then we calculate ground state total energy as 

a functional of ground state density.  

(Detailed mathematical steps of this calculation is given in appendix C) 

2.4. Approximations to exchange correlation potential 

Exchange correlation potential is obtained as the functional derivative of the 

exchange correlation energy as, 

 
 
 r

E
rv xc

xc



                                                                                                (2.12) 

In practice, exchange correlation energy is split into exchange and correlation part 

separately. Therefore we have, 
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      cxxc EEE                                                                                     (2.13) 

Corresponding potentials are also defined separately as,  
 
 r

E
rv x

x



  and 

 
 



 c
c

E
rv  . Exchange part constitutes about 10% of the total energy while 

correlation part constitutes less than one percent of the total energy for the 

majority systems. Correlation effects, although small become important in certain 

cases such as information of negative ions. Therefore it is very important that 

accurate exchange and correlation energy functional be available for density 

functional calculations.  

There are different types of approximations involved in DFT calculation for the 

unknown exchange-correlation density functional EXC[ρ] which make DFT 

practically implementable. The approximations are Local Density Approximation 

(LDA), Generalised Gradient Approximation (GGA) and Generalised Density 

Approximation with modified Becke Johnson (GGA+mbJ). 

2.4.1. Localised Density Approximation (LDA) 

The Local Density Approximation (LDA) also known as the local functional 

proposed by Kohn and Sham in 1965 and is the basis of all approximate 

exchange-correlation function. In LDA one assumes that the exchange correlation 

energy leads to an exchange correlation potential depending on the value of 

density in ‘r’ and not on its gradient. 

    drrrE xcXC                                                                                     (2.14) 

where xc is the exchange-correlation energy density of the uniform electron gas 

of density  r [65]. It is exact for a homogenous electron gas so it works well for 

systems in which the electron density does not vary too rapidly. The LDA 
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functional reproduces the ground state properties of many systems very 

accurately. They are also known to predict inaccurately the energy band gap of 

semiconductor materials [66,67,68]. 

2.4.2. Generalised Density Approximation (GGA) 

Besides the local density approximation (LDA), a number of non-local 

approximations have been suggested. The reason for that is a high value of 

density gradient in some materials. But even when the gradient is not small the 

LDA gives good results. The approximation which accounts for spatial variation 

of density is usually termed as the Generalised Gradient Approximation (GGA). 

In GGA the gradient of the charge density is included in the exchange-correlation 

functional in order to account for the non-homogeneity of the true electron density 

i.e. the exchange correlation potential is a function of both the charge density at a 

given point and the first order gradient of the charge density at the same point.  

         rdrrrE xcXC
3                                                                     (2.15) 

Generally, GGA has the following advantages over LDA [69, 70, 71]: 

1. GGA improves ground state properties for light atoms, molecules and clusters. 

2. GGA predicts the correct magnetic properties of 3d transition metals such as 

body centred iron. 

There are different types of GGA functional and detailed discussions on the 

different types of GGA functionals are present in the reference [72]. 

2.4.3. Generalised Density Approximation with modified Becke Johnson 

(GGA+mBJ) 

The Generalised Density Approximation with modified Becke Johnson 

(GGA+mBJ) overcomes the underestimation in the calculation of energy band 
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gaps within the LDA and GGA and competes in accuracy with the expensive 

hybrid and GW methods.  The modified Becke Johnson potential was proposed 

by Tran and Blah in 2009 [73]. It is a semi local approximation to an atomic 

“exact-exchange” potential and a screening term. In the modified Becke Johnson 

potential, 
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 
 r

rt
crcr BR

x
mBJ
x




 


6

51
23,,                                   (2.16) 

where 
2

,1    

i
N
i  is the electron density, 

 

,
*
,1 .

2

1
ii

N
it 








    is the kinetic energy density, 

 
 

     








  rxrxBR

x erxe
rb

r 






2

1
1

1
,   is the Becke-Roussel (BR) 

exchange potential [74] which was proposed to model the coulomb potential 

created by the exchange hole and 
 
 r

rt






 is the screening term. In equation 

(2.16), 

 
 

2
1

3

/

/
1













 
 

cellcell

rd
r

r

V
c




 i.e. for any value of c, the exchange 

potential is obtained for constant electron density. Here Vcell is the unit cell 

volume and α = -0.012 and β = 1.023 bohr1/2 are the two free parameters. 

This semi local exchange potential, which recovers the local-density 

approximation (LDA) for a constant electron density, mimics very well the 

behaviour of orbital-dependent potentials and leads to calculations which are 
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barely more expensive than LDA calculations and can be applied to very large 

systems in an efficient way. 

2.5. Concepts of Phase Transition. 

During a phase transition, certain properties of a given medium often 

discontinuously changes due to some external conditions such as temperature, 

pressure and others. These changes of phase are called phase transitions and the 

phenomena are very important not only in natural processes, but also in industry. 

In early years the rate at which the transition occurred were observed in 

attempting the classification of phase transition in solid states. Based on different 

characteristics of transition, three types of approaches are used for describing 

phase transition namely the kinetic approach, the thermodynamic approach and 

the structural approach. 

Kinetic approach gives in consideration the transition rate and the activation 

energy between polymorphs of a given compound. In the thermodynamic 

approach the changes in the Gibbs free energy as a function of external 

parameters like temperature, pressure, magnetic field, or electric field are 

investigated. Lastly in structural approach the structures of the polymorphic 

phases before and after the transformation are compared. In general, the 

distinction between transformation types is open to more than one definition and 

is related to a phenomenological rather than an atomistic understanding of the 

transition. 

In nature, structural phase transitions are common phenomena that can be induced 

by pressure or temperature. It plays an important role in the discovery of new 

phases with different chemical and physical properties in solid states. 

Transformations on increasing pressure often lead to crystalline polymorphs with 

a defined symmetry because of volume restriction. The basic problems about 

phase transformations, crystal structure and the nature of atomic bonding can be 

answered using high-pressure techniques. Also the use of high pressure to 
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synthesize new materials, to study the behaviour of existing materials and to tune 

materials physical properties provides tremendous potential for advancement in 

applied materials research.  

There are various observable which characterize the energy aspect of a system. 

The internal energy U which is the total energy of the system is conserved. The 

enthalpy )( PVUH  is the energy needed for creation or destruction of the 

system with volume V in an environment at a fixed pressure P. As the enthalpy 

can be used to characterize the heat, the aspects of work can be characterized by 

the free energy.  

The Gibb’s free energy is defined as 

TSPVUG                                                                                               (2.17) 

In the present study the structural phase transformation from the zinc blende to 

the rock salt phase is studied. The structural phase transition from ZB to RS 

(B3→B1) phase is determined by calculating the Gibbs free energy G. Since our 

calculation is done at zero temperature we have ignored the entropy contribution. 

Therefore the structural phase transition has been calculated from the condition of 

equal enthalpies i.e. H=E+PV. 

2.6. Theory of Elastic Constants. 

The elastic constant of solids provides a link between the mechanical and 

dynamical behaviours of a crustal and also gives significant information 

concerning the nature of forces in solids.  

Solids are not perfectly rigid and therefore when proper forces are applied, there 

is change in the shape and size of the material. After the removal of the forces if 

the changes are not too large, the bodies regain their original shape and size. This 

property of solid by virtue of which they regain their original shape and size is 

called elasticity. When an external force is applied to a body in which one part 
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exerts a force on the neighbouring parts it is known as stress. The elastic constant 

of a material can represent the deformation of materials under any small stress. 

According to the linear theory of elasticity strain (relative elongations and 

distortion) are linearly proportional to the applied stress within the elastic limit of 

the body. Outside this elastic limit a non linear effects break the proportionality 

between the stress and strain and for large stresses the deformation becomes 

irreversible. 

The stress and strain of a material are linearly connected by the generalised 

Hooke’s law, 

prmnprmn C                                                                                                    (2.18) 

where mn  is the stress tensor along with the individual elements which are called 

the stress components, mnprC  are the elastic constants or the stiffness tensor 

popularly known as the stiffness matrix and pr  is the strain tensor with its 

individual elements known as the strain components. Here, m, n, p, r = 1,2, 3.  

The stiffness coefficients for this linear stress-strain relationship are the individual 

elements and therefore the stress and strain tensor has 3×3 = 9 components each 

while the stiffness tensor has 34 = 81 independent elements. These individual 

elements are referred by various names as elastic constants, elastic moduli and 

stiffness coefficients and they are the fundamental parameters providing detailed 

information on the materials mechanical properties. A proper knowledge of these 

parameters enables us in understanding various mechanical behaviour of the 

material at different conditions.  The number of these elastic constants can be 

reduced from different symmetries. 

Under the stress symmetry, the stress components are symmetric. i.e. nmmn    

and therefore the nine stress components is reduced to six components only.  
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Thus equation (2.18) can be written as  

prprnmnm C                                                                                                    (2.19) 

Now, subtracting equation (2.19) from (2.18) we get,  

 nmprmnprprnmmn CC    

i.e. nmprmnpr CC                                                                                                (2.20) 

There are six independent ways to express m and n taken together and still nine 

independent ways to express p and r taken together. Thus with this symmetry the 

number of independent elastic constants reduces to (6×9=) 54 from 81. 

Under the strain symmetry the strain components are symmetric. i.e. rppr   . 

Therefore from equation (2.18),  

rpmnrpmn C                                                                                                     (2.21) 

Again, subtracting equation (2.20) from (2.19) we get, 

mnrpmnpr CC                                                                                                      (2.22) 

Thus we find from equation (2.20) and equation (2.21) that there are six 

independent ways of expressing m and n when p and r are fixed and six 

independent ways of expressing p and r when m and n are fixed. Hence there are 

6×6=36 independent constants with stress and strain symmetry. 
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Thus in matrix format the stress-strain relation showing the 36 independent 

components of stiffness can be represented as 
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nmnm C     (m, n=1, 2, …, 6)                                                                        (2.24) 

Now, if we consider the Strain energy density function W, then 

nmmnCW 
2

1
                                                                                                 (2.25) 

where 
i

i

W







                                                                                                (2.26) 

We see that W is quadratic function of strain and thus can be also written as 

mnnmCW 
2

1
                                                                                                 (2.27) 

Now, subtracting equation (2.27) from equation (2.25) we get  

nmmn CC                                                                                                           (2.28) 

Thus stiffness is symmetric and has 21 independent elastic constants. These 21 

independent elastic constants can further be reduced by considering the symmetry 

conditions found in different crystals.  

In particular for a cubic lattice due to higher symmetry there are only three 

independent elastic constants C11, C12 and C44.  
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Ccubic                                                (2.29) 

Explicit form of other lattice symmetries can be found in ref [79]. 

In principle there are two ways of calculating the elastic constants of a material 

from the ab initio methods, the stress theorem [76] and the energy approach [77].  

The stress theorem relies on the ab initio approach to directly calculate the stress 

tensor. And once the stress tensor has been computed by ab initio method, the 

elastic constants are directly derived from the generalised Hook’s law in equation 

(2.18). In our calculations of elastic constant we have used the energy approach. 

The energy approach is based on the computed total energy of properly selected 

strained states of crystal and is given in detail in Chapter 3, Computational Tools. 

 

 

 

 

 


