

DEPARTMENT OF PHYSICS SCHOOL OF PHYSICAL SCIENCES ASSAM UNIVERSITY, SILCHAR (A CENTRAL UNIVERSITY CONSTITUTED UNDER ACT XIII OF 1989) Silchar-788011, ASSAM, India

DECLARATION

I, KHOIROM KABITA bearing Ph.D. Registration No Ph.D./2037/12 dated 12/09/12, & UNIVERSITY REGISTRATION NO: 24-110033327 of 2011-2012 hereby declare that the subject matter of the thesis entitled "DFT STUDY OF SOME SELECTED BINARY COMPOUND SEMICONDUCTORS: ELECTRONIC STRUCTURES AND ELASTIC PROPERTIES" is the record of work done by me and that the contents of this thesis did not form the basis for award of any award to me or to anybody else to the best of my knowledge. The thesis has not been submitted in any other University/Institute.

This thesis is being submitted to Assam University for the degree of Doctor of Philosophy in Physics.

Place:

Date:

(Khoirom Kabita)

ACKNOWLEDGEMENT

I take this opportunity to express my deep sense of gratitude and thanks to my mentor and guide, Dr. B Indrajit Sharma, Associate Professor, Department of Physics, Assam University Silchar, whose dedication, keen interest and overwhelming attitude to help his students has been solely and mainly responsible in completion of my thesis work. His timely advice, meticulous scrutiny, scholarly advice and scientific approach has helped me to a very great extent to accomplish my work. I could not have imagined having a better advisor and mentor for my Ph.D study.

I would like to also show my gratitude all the Faculty members, Lab Staffs and Office Staffs of the Department of Physics, for their insightful comments and encouragement which incented me to widen my research from various perspectives.

I also thank my past and present research fellow mates of the Department of Physics and other Departments for sharing their pearls of wisdom with me during the course of my research.

I would like to thank Dean, School of Physical Science for all official logistic support and Assam University Silchar, for providing me with University fellowship as it would have been very difficult to complete my Ph.D work without this financial support.

Lastly but not the least I would like to thank my family: my grandmother, my parents and brothers for supporting me spiritually throughout my Ph.D and my life in general and also pray to God for the time to come.

(Khoirom Kabita)

CONTENTS

Abstract	i
List of Figures	v
List of Tables	xiv
1. INTRODUCTION AND REVIEW OF LITERATURE	
1.1. General Introduction to compound semiconductors	1
1.2. Review of Literature	3
1.3. Motivation	6
1.4. Research Objectives	6
2. THEORITICAL METHODOLOGY	
2.1. Many Body problems	7
2.2. Born-Oppenheimer approximation	8
2.3. Density Functional Theory	9
2.3.1 Hohenberg and Kohn theorem	10
2.3.2. Khon Sham Equation	11
2.4. Approximation to Exchange correlation potential	13
2.4.1. Localised Density Approximation (LDA)	14
2.4.2. Generalised Gradient Approximation (GGA)	15
2.4.3. Generalised Gradient Approximation with modified Becke Johnson	
(GGA+mbJ)	15
2.5. Concepts of Phase Transition	17
2.6. Theory of Elastic Constants	18

3. COMPUTATIONAL TOOLS

3.1. The WIEN2k code	23
3.2. Elastic constant code: Cubic Elastic	26
4. III-V COMPOUND SEMICONDUCTORS: GaP, GaAs, InP, InAs	
4.1. Structural properties and Phase transition under induced pressure	28
4.2. Elastic properties	40
4.3. Electronic properties	56
4.4. Conclusion	80
5. II-VI COMPOUND SEMICONDUCTORS: ZnS, CdTe, ZnSe	
5.1. Structural properties and Phase transition under induced pressure	83
5.2. Elastic properties	93
5.3. Electronic properties	102
5.4. Conclusion	119
6. EFFECT OF DOPING: InP doped with Ga (In _x Ga _(1-x) P)	
6.1. Structural properties and Phase Transition under	121
6. 2 Electronic properties	129
6.3. Conclusion	135
7. OVERALL CONCLUSION AND OUTLOOK	137
BIBILOGRAPHY	140
APPENDIX A	159
APPENDIX B	162
APPENDIX C	165

LIST OF PUBLICATIONS	-169
LIST OF CONFERENCES, SEMINARS AND WORKSHOPS	
ATTENDED	171

LIST OF FIGURES

Figure 4.1.	Total energy as a function of primitive cell volume
	for GaP-ZB and GaP-RS with (a) LDA method and
	(b) GGA method
Figure 4.2.	Enthalpy as a function of pressure for ZB and RS phase
	of GaP within (a) LDA method and (b) GGA method
Figure 4.3.	Normalized volume as a function of pressure for GaP-ZB
	and GaP-RS
Figure 4.4.	Total energy as a function of primitive cell volume
	for GaAs-ZB and GaAs-RS with (a) LDA method and
	(b) GGA method
Figure 4.5.	Enthalpy as a function of pressure for ZB and RS phase
	of GaAs with (a) LDA method and (b) GGA method
Figure 4.6.	Normalized volume as a function of pressure for GsAs-ZB
	and GaAs-RS
Figure 4.7.	Total energy as a function of primitive cell volume
	for InP-ZB and InP-RS with (a) LDA method and
	(b) GGA method
Figure 4.8.	Enthalpy as a function of pressure for ZB and RS phase
	of InP with (a) LDA method and (b) GGA method
Figure 4.9.	Normalized volume as a function of pressure for InP-ZB
	and InP-RS
Figure 4.10.	Total energy as a function of primitive cell volume
	for InAs-ZB and InAs-RS with (a) LDA method and
	(b) GGA method
Figure 4.11.	Enthalpy as a function of pressure for ZB and RS phase

	of InAs with (a) LDA method and (b) GGA method	39
Figure 4.12.	Normalized volume as a function of pressure for InAs-ZB	
	and InAs-RS	40
Figure 4.13.	Elastic constants (C11, C12, C44) as a function of pressure	
	of GaP-ZB and GaP-RS phase	44
Figure 4.14.	Elastic parameters (Zener Anisotropy factor, Poisson's ratio,	
	Kleinmann parameter and B/G ratio) as a function of pressure	
	for ZB and RS phases of GaP	45
Figure 4.15.	Elastic parameters (Young's modulus and Debye's temperature)	
	as a function of pressure of GaP in ZB phase and RS phase	46
Figure 4.16.	Elastic constants (C_{11} , C_{12} , C_{44}) as a function of pressure	
	of GaAs-ZB and GaAs-RS phase	48
Figure 4.17.	Elastic parameters (Zener Anisotropy factor, Poisson's ratio,	
	Kleinmann parameter and B/G ratio) as a function of pressure	
	of GaAs in ZB phase	49
Figure 4.18.	Elastic parameters (Young's modulus and Debye's temperature)	
	as a function of pressure of GaAs in ZB phase	50
Figure 4.19.	Elastic constants (C_{11} , C_{12} , C_{44}) as a function of pressure	
	of InP-ZB and InP-RS phase	51
Figure 4.20.	Elastic parameters (Zener Anisotropy factor, Poisson's ratio,	
	Kleinmann parameter and B/G ratio) as a function of pressure	
	of InP-ZB phase and InP-RS phase	52
Figure 4.21.	Elastic parameters (Young's modulus and Debye's temperature)	
	as a function of pressure of GaAs in ZB phase	53
Figure 4.22.	Elastic constants (C_{11} , C_{12} , C_{44}) as a function of pressure	
	of InAs-ZB and InAs-RS phase	54
Figure 4.23.	Elastic parameters (Zener Anisotropy factor, Poisson's ratio,	
	Kleinmann parameter and B/G ratio) as a function of pressure	

	of InAs in ZB phase and RS phase	55
Figure 4.24.	Elastic parameters (Young's modulus and Debye's temperature))
	as a function of pressure of InAs in ZB phase and RS phase	56
Figure 4.25.	Energy band diagram of GaP-ZB phase at 0 GPa pressure	
	within (a) LDA, (b) GGA and (c) mBJ-GGA	57
Figure 4.26.	Energy band diagram of GaP-RS phase at 0 GPa pressure	
	within (a) LDA, (b) GGA and (c) mBJ-GGA	58
Figure 4.27.	Total and Partial DOS of GaAS-ZB and GaAs-RS phase	
	within mBJ-GGA	58
Figure 4.28.	Energy band diagram of GaP-ZB phase at (a) 5 GPa pressure	
	(b) 10 GPa pressure (c) 15 GPa pressure and	
	(d) 20 GPa pressure	59
Figure 4.29.	Variation of Energy band gaps of GaP-ZB phase	
	with pressure	60
Figure 4.30.	Energy band diagram of GaP-RS phase at (a) 23 GPa pressure	
	(b) 27 GPa pressure (c) 32 GPa pressure and	
	(d) 37 GPa pressure	61
Figure 4.31.	Total DOS of GaP-ZB at (a) 23 GPa pressure (b) 27 GPa pressu	re
	(c) 32 GPa pressure and (d) 37 GPa pressure	62
Figure 4.32.	Total DOS of GaP-RS at (a) 23 GPa pressure (b) 27 GPa pressu	re
	(c) 32 GPa pressure and (d) 37 GPa pressure	62
Figure 4.33.	Band structure of GaAs-ZB at 0 GPa pressure within (a) LDA	
	(b) GGA and (c) mBJ-GGA	64
Figure 4.34.	Band structure of GaAs-RS at 0 GPa pressure within (a) LDA	
	(b) GGA and (c) mBJ-GGA	64
Figure 4.35.	Total and Partial DOS of GaAS-ZB and GaAs-RS within	
	mBJ-GGA	65

Figure 4.36.	Energy band diagram of ZB phase of GaAs at (a) 2 GPa pressure	e
	(b) 5 GPa pressure (c) 8 GPa pressure and	
	(d) 10 GPa pressure	66
Figure 4.37.	Variation of Energy band gaps of GaAs-ZB phase with	
	pressure	67
Figure 4.38.	Energy band diagram of GaAs-RS at (a) 12 GPa pressure	
	(b) 15 GPa pressure (c) 17 GPa pressure and	
	(d) 20 GPa pressure	67
Figure 4.39.	Total DOS of GaAs-ZB at (a) 2 GPa pressure (b) 5 GPa pressure	e
	(c) 8 GPa pressure and (d) 10 GPa pressure	68
Figure 4.40.	Total DOS of GaAs-RS at (a) 12 GPa pressure (b) 15 GPa press	ure
	(c) 17 GPa pressure and (d) 20 GPa pressure	68
Figure 4.41.	Band structure of InP-ZB at 0 GPa pressure within (a) LDA	
	(b) GGA and (c) mBJ-GGA	70
Figure 4.42.	Band structure of InP-RS at 0 GPa pressure within (a) LDA	
	(b) GGA and (c) mBJ-GGA	70
Figure 4.43.	Total and Partial DOS of InP-ZB and InP-RS within	
	mBJ-GGA	71
Figure 4.44.	Energy band diagram of InP-ZB at (a) 2 GPa pressure	
	(b) 4 GPa pressure (c) 6 GPa pressure and	
	(d) 8 GPa pressure	72
Figure 4.45.	Variation of Energy band gaps of InP-ZB phase with	
	pressure	73
Figure 4.46.	Energy band diagram of InP-RS in (a) 10 GPa pressure	
	(b) 12 GPa pressure (c) 14 GPa pressure and	
	(d) 16 GPa pressure	73
Figure 4.47.	Total DOS of InP-ZB at (a) 2 GPa pressure (b) 4 GPa pressure	
	(c) 6 GPa pressure and (d) 8 GPa pressure	74

Figure 1 18	Total DOS of InP_RS at (a) 10 GPa pressure (b) 12 GPa pressure	-
1 Iguie 4.40.	$(a) 14 \text{ CP}_{a} \text{ measure on } 1(d) 1(\text{ CP}_{a} \text{ measure}))$	-
	(c) 14 GPa pressure and (d) 16 GPa pressure	/4
Figure 4.49.	Band structure of InAs-ZB at 0 GPa pressure within (a) LDA	
	(b) GGA and (c) mBJ-GGA	76
Figure 4.50.	Band structures of InAs-RS at 0 GPa pressure within (a) LDA	
	(b) GGA and (c) mBJ-GGA	76
Figure 4.51.	Total and Partial DOS of InAs-ZB and InAs-RS within	
	mBJ-GGA	77
Figure 4.52.	Energy band diagram InAs-ZB in (a) 1 GPa pressure	
	(b) 2 GPa pressure (c) 3 GPa pressure and	
	(d) 4 GPa pressure	78
Figure 4.53.	Variation of Energy band gaps of InAs-ZB phase with	
	pressure	78
Figure 4.54.	Energy band diagram InAs-RS at (a) 5 GPa pressure	
	(b) 6 GPa pressure (c) 7 GPa pressure and	
	(d) 9 GPa pressure	79
Figure 4.55.	Total DOS of InAs-ZB at (a) 1 GPa pressure (b) 2 GPa pressure	
	(c) 3 GPa pressure and (d) 4 GPa pressure	79
Figure 4.56.	Total DOS of InAs-RS at (a) 5 GPa pressure (b) 6 GPa pressure	
	(c) 7 GPa pressure and (d) 9 GPa pressure	80
Figure 5.1.	Total energy as a function of primitive cell volume for ZnS-ZB	
	and ZnS-RS with (a) LDA and (b) GGA	84
Figure 5.2.	Enthalpy as a function of pressure of ZnS-ZB and ZnS-RS phase	•
	within (a) LDA and (b) GGA	86
Figure 5.3.	Normalized volume as a function of pressure for ZnS-ZB	
	and ZnS-RS	87
Figure 5.4.	Total energy as a function of volume of CdTe- ZB and CdTe-RS	5
	structure with LDA and GGA methods	88

Figure 5.5.	Enthalpy as a function of pressure of CdTe-ZB and CdTe-RS ph	ase
	within (a) LDA and (b) GGA	89
Figure 5.6.	Normalised volume versus pressure of CdTe-ZB and CdTe-RS	
	structure within GGA	90
Figure 5.7.	Total energy as a function of volume of ZnSe -ZB and ZnSe-RS	
	structure within LDA and GGA methods	91
Figure 5.8.	Enthalpy as a function of pressure for ZB and RS phase of ZnSe	;
	with (a) LDA method and (b) GGA method	92
Figure 5.9.	Normalized volume as a function of pressure for ZnSe-ZB	
	and ZnSe-RS	93
Figure 5.10.	Elastic constants (C_{11} , C_{12} , C_{44}) as a function of pressure	
	for ZnS-ZB and ZnS-RS structure	94
Figure 5.11.	Elastic parameters (Zener Anisotropy factor, Poisson's ratio,	
	Kleinmann parameter and B/G ratio) as a function of pressure	
	for ZB and RS phase of ZnS	94
Figure 5.12.	Elastic parameters (Young's modulus and Debye's temperature))
	as a function of pressure of ZnS in ZB phase and RS phase	96
Figure 5.13.	Elastic parameters versus pressure for ZB and RS phase	
	of CdTe	97
Figure 5.14.	Elastic parameters (Zener Anisotropy factor, Poisson's ratio,	
	Kleinmann parameter and B/G ratio) as a function of pressure	
	for ZB and RS phases of CdTe	98
Figure 5.15.	Elastic parameters (Young's modulus and Debye's temperature))
	as a function of pressure of CdTe in ZB phase and RS phase -	99
Figure 5.16.	Elastic constants (C11, C12, C44) as a function of pressure	
	of ZnSe-ZB and ZnSe-RS phase	100
Figure 5.17.	Elastic parameters (Zener Anisotropy factor, Poisson's ratio,	
	Kleinmann parameter and B/G ratio) as a function of pressure	

	for ZnSe-ZB and ZnSe-RS	100
Figure 5.18.	Elastic parameters (Young's modulus and Debye's temperature	e)
	as a function of pressure of ZnSe in ZB phase and RS phase	101
Figure 5.19.	Band structure of ZnS-ZB at 0 GPa pressure within (a) LDA	
	(b) GGA and (c) mBJ-GGA	103
Figure 5.20.	Band structure of ZnS-RS at 0 GPa pressure within (a) LDA	
	(b) GGA and (c) mBJ-GGA	103
Figure 5.21.	Total and Partial DOS of ZnS-ZB and ZnS-RS within	
	mBJ-GGA	104
Figure 5.22.	Energy band diagram ZnS-ZB at (a) 4 GPa pressure	
	(b) 8 GPa pressure (c) 12 GPa pressure and	
	(d) 16 GPa pressure	105
Figure 5.23.	Variation in Energy band gaps of ZnS-ZB phase with	
	pressure	106
Figure 5.24.	Energy band diagram ZnS-RS phase at (a) 18 GPa pressure	
	(b) 22 GPa pressure (c) 26 GPa pressure and	
	(d) 30 GPa pressure	106
Figure 5.25.	Total DOS of ZnS-ZB structure at (a) 4 GPa pressure	
	(b) 8 GPa pressure (c) 12 GPa pressure and	
	(d) 16 GPa pressure	107
Figure 5.26.	Total DOS of ZnS-RS structure at (a) 18 GPa pressure	
	(b) 22 GPa pressure (c) 26 GPa pressure and	
	(d) 30 GPa pressure	107
Figure 5.27.	Band structure of CdTe-ZB at 0 GPa pressure within (a) LDA	
	(b) GGA and (c) mBJ-GGA	109
Figure 5.28.	Band structure of CdTe-RS at 0 GPa pressure within (a) LDA	
	(b) GGA and (c) mBJ-GGA methods	109

Figure 5.29.	Total and Partial DOS of CdTe-ZB and CdTe-RS within	
	mBJ-GGA method	110
Figure 5.30.	Energy band diagram CdTe-ZB at (a) 1 GPa pressure	
	(b) 2 GPa pressure and (c) 3 GPa pressure	111
Figure 5.31.	Variation of Energy band gaps of CdTe-ZB phase with	112
Figure 5 32	Energy hand diagram CdTe-RS at (a) 5 GPa pressure	112
1 iguie 5.52.	(b) 6 GPa pressure and (c) 7 GPa pressure	112
Figure 5 33	Total DOS of $CdTe_7ZB$ structure at (a) 1 GPa pressure	112
1 iguie 5.55.	(b) 2 GPa pressure and (c) 3 GPa pressure	113
Figure 5.34.	Total DOS of CdTe-RS structure at (a) 5 GPa pressure.	
0	(b) 6 GPa pressure and (c) 7 GPa pressure	113
Figure 5.35.	Band structure of ZnSe-ZB at 0 GPa pressure within (a) LDA	
-	(b) GGA and (c) mBJ-GGA	114
Figure 5.36.	Band structure of ZnSe-RS at 0 GPa pressure within (a) LDA	
	(b) GGA and (c) mBJ-GGA	115
Figure 5.37.	Total and Partial DOS of ZnSe-ZB and ZnSe-RS within	
-	mBJ-GGA	115
Figure 5.38.	Energy band diagram ZnSe-ZB at (a) 2 GPa pressure	
C	(b) 4 GPa pressure (c) 6 GPa pressure and	
	(d) 8 GPa pressure	116
Figure 5.39.	Variation of Energy band gaps of ZnSe-ZB phase with	
C	pressure	117
Figure 5.40.	Energy band diagram ZnSe-RS at (a) 12 GPa pressure	
U	(b) 14 GPa pressure, (c) 16 GPa pressure and	
	(d) 18 GPa pressure	117
Figure 5.41.	Total DOS of ZnSe-ZB at (a) 2 GPa pressure (b) 4 GPa pressu	re
C	(c) 6 GPa pressure and (d) 8 GPa pressure	118

Figure 5.42.	Total DOS of ZnSe-RS at (a) 12 GPa pressure (b) 14 GPa press	ure
	(c) 16 GPa pressure and (d) 18 GPa pressure	118
Figure 6.1.	Energy versus volume curve of In _{1-x} Ga _x P alloy within GGA	
	in ZB and RS structure at different concentration of x	122
Figure 6.2.	Composition dependence of lattice parameter (A ⁰) within GGA	
	in (a) ZB and (b) RS structure of $In_{1-x}Ga_xP$ alloy as compared	
	with Vegard's prediction	124
Figure 6.3.	Composition dependence of bulk modulus (A^0) within GGA in	
	(a) ZB and (b) RS structure of $In_{1-x}Ga_xP$ alloy as compared	
	with Vegard's prediction	125
Figure 6.4.	Enthalpy versus Pressure of In _{1-x} Ga _x P alloy at different	
	concentration of x	127
Figure 6.5.	Phase transition of In _{1-x} Ga _x P alloy at different concentration	
	of x	128
Figure 6.6.	Energy band diagram of In _{1-x} Ga _x P (zinc blende phase) alloy	
	at different concentration of x	129
Figure 6.7.	Energy band diagram of $In_{1-x}Ga_xP$ (rock salt phase) alloy	
	at different concentration of x	131
Figure 6.8 (a).	Total and partial DOS of InP-zinc blende phase	133
Figure 6.8 (b).	Total and partial DOS of In _{0.75} Ga _{0.5} P-zinc blende phase	133
Figure 6.8 (c).	Total and partial DOS of In _{0.50} Ga _{0.5} P-zincblende phase	134
Figure 6.8 (d).	Total and partial DOS of In _{0.25} Ga _{0.75} P-zinc blende phase	134
Figure 6.8 (e).	Total and partial DOS of GaP-zinc blende phase	135

LIST OF TABLES

Table 4.1.	Experimental and calculated ground state structural parameters	
	of GaP in ZB and RS structure	29
Table 4.2.	Phase transition pressure ' $P_t(GPa)$ ' and volume collapse of GaP -	30
Table 4.3.	Experimental and calculated ground state structural parameters	
	of GaAs in ZB and RS structure	33
Table 4.4.	Phase transition pressure ' $P_t(GPa)$ ' and volume collapse	
	of GaAs	34
Table 4.5.	Lattice constant 'a (A ⁰)', bulk modulus 'B (GPa)' and pressure	
	derivative of bulk modulus (B ^{$/$}) of ZB and RS structure of InP	
	at zero pressure	36
Table 4.6.	Phase transition pressure ' $P_t(GPa)$ ' and volume collapse	
	of InP	37
Table 4.7.	Experimental and calculated ground state structural parameters	
	of InAS in ZB and RS structure	39
Table 4.8.	Phase transition pressure ' $P_t(GPa)$ ' and volume collapse	
	of InAs	40
Table 5.1.	Experimental and calculated ground state structural parameters	
	of ZnS in ZB and RS structure	85
Table 5.2.	Phase transition pressure ' $P_t(GPa)$ ' and volume collapse	
	of ZnS	86
Table 5.3.	Experimental and calculated ground state structural parameters	
	of CdTe	88
Table 5.4.	Phase transition pressure ' $P_t(GPa)$ ' and volume collapse	
	of CdTe	89
Table 5.5.	Experimental and calculated ground state structural parameters	

	of ZnSe in ZB and RS structure	91
Table 5.6.	Phase transition pressure ' $P_t(GPa)$ ' and volume collapse	
	of ZnSe	92
Table 6.1.	Lattice parameters of In _{1-x} Ga _x P alloy (in ZB and RS structure)	
	at different concentration of x	123
Table 6.2.	Formation energies of In _{1-x} Ga _x P (in zincblende and rocksalt phase	se)
	alloys at different concentration 'x'	126
Table 6.3.	Transition pressure of In1-xGaxP alloy at different concentration	
	of 'x'	127
Table 6.4.	Calculated energy band gap of In _(1-x) Ga _x P	132