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APPENDIX A 

FUNCTIONAL. 

A function is a rule for taking a number as an input and giving a number as an 

output. Likewise a functional is a rule for taking a function as an input and giving 

a number as output. An example of a functional is the particle number  

    drrrN                                                                                                                                 (1) 

The particle number functional,   rN  , takes a function  (the electron density) as 

its input and gives a number (the number of particles) as its output. Other good 

examples of functional might be the average temperature during a day. 
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And the expectation value of the kinetic energy for a quantum system 
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Functionals have their own type of differentiation rule. The functional derivative 

  
 r

rF




 of the function   rF   is defined as 

     
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                                                                                                   (4) 

where ∆ represents an infinitesimally small change (∆ was chosen instead of δ to 

avoid confusion with the δ’s used in the notation for the functional derivative). As 

an example we know that the particle number N is given as  

    drrrN                                                                                                                    (5) 
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So,  

            drrdrrrrrN                                                                 (6) 

and  
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 
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r
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


                                                                                                                         (7) 

Likewise the contribution to the energy eigenvalue from the external potential is 

      drrrrVne                                                                                                           (8) 

so, 

                drrrdrrrrrrVne                                                   

(9) 
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r
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
                                                                                                                 (10) 

As we can see from the last example and the definition (4), the functional derivative 

does not have to be constant with respect to position. Additionally, it may also 

depend on the function,  ,r


 at which it is evaluated. For instance if we have a 

functional  

        drrrfrA
2         

then, 
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So the functional becomes, 
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As we saw in the previous section, a density can only be the ground state density 

of maximum one external potential. If  r  corresponds to the ground state we can 

therefore unambiguously define the energy functional  

    || HrE


  

Where ψ denotes the ground state corresponding  r  and H


is the Hamiltonian 

yielding this ground state. 
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APPENDIX B 

PROOF OF HOHENBERG AND KOHN THEOREMS 

THEOREM 1. The external potential is determined by the electron density 

and for a given density there will be a single external potential. 

Proof: 

Let us assume that ρ(r) is the ground state density of a system of electrons. Let us 

also assume that there are two potentials V1 and V2 which produces two different 

Hamiltonian H1 and H2 respectively as  

eeVTVH  11  

and, 

eeVTVH  22  

Again we assume that there are two wave functions 
1 and 

2  that produce the 

same density  .r Therefore, 

22111 ||||  HHE                                                                                                        (1) 

Now, we consider the term, 

21222212 ||||  HHHH   

2212222212 ||||||  HHHH   

22122212 ||||  VVEH                                                                                        (2) 

Thus equation (1) becomes, 

   rdVVrEE 3
2121                                                                                                               (3) 
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Similarly, 

1212222 ||||  HHE   

Considering the term, 

12111121 ||||  HHHH   

1121111121 ||||||  HHHH   

   rdVVrEH 3
121121 ||     

   rdVVrEH 3
211121 ||           

  

Thus equation (3) becomes, 

   rdVVrEE 3
2112                                                                                                                (4) 

Adding equation (2) and (4) we get, 

1221 EEEE                                                                                                                                 (5) 

This equation is naturally not correct and contradictory to each other. This is due to 

the fact that we considered two potential V1 and V2 for a given potential  r . 

Hence we conclude that there cannot be two external potential for a single  r .  

Theorem 2. The functional       eeHK VTF   determines the ground state 

energy if and only if the input density is the true ground state density. 

Proof: 

Let us assume that  r  is the ground state density for the system of electron. Then 

the ground state energy functional is  

        HKext FrdrVrE  
3  

Here,       eeHK VTF   is the universal functional. 

Let us consider a trial density  r~  that determines its own  rVext

~
, the Hamiltonian 

H
~

and ~ . 
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Let us take ~ as trial function of the Hamiltonian H of the ground state density  r

.  

Then,    ~||~ HE   

Now,  

   ~|
2

1
|~~||~|~||~ 2

eeext VrVH   

      ~~~|~||~ 3
eeext VTrdrVH    

    ~~|~||~ 3
HKext FdrVH    

  ~|~||~ EH   

where,       ~~~
eeHK VTF    

so,     ~EE   

Thus, the functional  HKF  delivers the ground state energy if and only if input 

density is the true ground state density. 
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APPENDIX C 

DEDUCTION OF KOHN SHAM EQUATION 

The total energy, 

       


 XCext
i

ii Edrrdrd
rr

rr
E 




 

2

1
||

2

1 2                            (1) 

Let us apply the variational principle with the constraints that all the integrals, 

    1*   drrrI iiK                                                                                                         (2) 

For this we follow the following steps:  

Step 1: 

First term in equation 1 

 
i

ii  ||
2

1 2  

The orbital function K tem in this summation is 

   rr KK  ||
2

1 2  

   drrr KK   2*

2

1
 

=    drrr KK  









2*

2

1
 

Second term in equation (1): 

   
rdrd

rr

rr









2

1
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=
     

rdrd
rr

rrr

i

ii 





 *

2

1
 

The orbital function       rdrdr
rr

r
r KK








    

3rd term in the equation (1) 

   drrrext   

=      drrrr ii
i

ext  *  

The orbital function  rK term in this summation is 

     drrrr KextK 
*      

Fourth term equation (1) is 

     drrrE XCXC    

=      drrrr ii
i

exc  *  

The orbital function  rK  term in the summation is 

     drrrr KexcK 
*   

Step 2: 

By variational principle, 

   0 KK IEE   

Where KE are Lagrange multipliers which is to be determined. 

  0 KK IEE   
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Step 3: 

   drrrI kKK 
*  

  drII KKKKKK   
**  

=                rrdrrrdrrrdrrrII KKKKKKKKKK    ****  

 

i.e.        drrrdrrrI KKKKK    **  

Step 4: 

Considering the variation in  rK and the term containing  rK
* , we can write, 

  0 KK IEE   as, 

   drrr KK  









2

2

1
 

The term containing  rK
*  in the second term variation is, 

            rdrdr
rr

r
rrdrdr

rr

r
r KKKK








 





 **

2

1

2

1
 

It can be written as, 

      rdrdr
rr

r
r KK


 


 *  

The term containing  rK
*  in the third term variation is, 

     drrrr KextK 
*  

The term containing  rK
*  in the fourth term variation is, 
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     drrrr KexcK 
*  

And the term containing  rK
*  in the constraint variation is, 

   drrrI KKK  
*  

Thus, we can write the equation of variation, 

  0 KK IEE  . 

Hence  rK
*  can be written as, 

                    0
2

1 ***2* 












  drrErdrrrrrdrdr

rr

r
rdrrr KKKKexcKKKKK 




          0
2

1 2* 
















  drrErrrd

rr

r
r KKexcextK 


  

This implies, 

        0
2

1 2 
















  rErrrd

rr

r
KKexcext 


 

         rErrrrd
rr

r
KKKexcext 




















 

2

2

1
 

 


