2017/ODD/12/31/AE-301 (C)/196

B.Tech Odd Semester (CBCS) Exam., December—2017

AGRICULTURAL ENGINEERING

(3rd Semester)

Course No. : AE-301 (C)

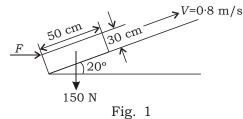
(Fluid Mechanics)

 $\frac{Full Marks: 75}{Pass Marks: 30}$

Time : 3 hours

- Note: 1. Answer one question from each Unit.
 - 2. Begin each answer in a new page.
 - 3. Answer parts of a question at a place.
 - 4. Assume reasonable data wherever required.
 - 5. The figures in the margin indicate full marks for the questions.

Unit—1


 (a) What is surface tension? What is it caused by? Why is the surface tension also called surface energy?

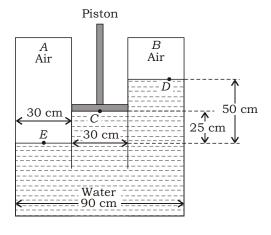
8J/1024

(Turn Over)

(2)

 (b) A 50 cm×30 cm×20 cm block weighing 150 N is to be moved at a constant velocity of 0.8 m/s on an inclined surface with a friction coefficient of 0.27 as shown in Fig. 1 : 5+5

- (i) Determine the force F that needs to be applied in the horizontal direction.
- (ii) If a 0.4 mm thick oil film with a dynamic viscosity of 0.012 Pa-s is applied between the block and inclined surface, determine the percent reduction in the required force.
- **2.** (a) Derive the only possible dimensionless group which combines velocity V, body size L, fluid density and surface tension coefficient .
 - (b) Derive a relation for the capillary rise of a liquid between two large parallel plates a distance t apart inserted into the liquid vertically. Take the contact angel to be .

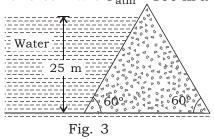

8J/1024

(Continued)

(3)

Unit—2

- **3.** (*a*) What is the difference between gauge pressure and absolute pressure?
 - (b) Two chambers with the same fluid at their base are separated by a piston whose weight is 25 N, as shown in Fig. 2. Calculate the gauge pressures in chambers A and B.


4. (*a*) Derive the expression for resultant hydrostatic force acting on a submerged flat surface, and the center of pressure with the help of a sketch.

Unit-

(b) The basic barometer can be used to measure the height of a building. If the barometric readings at the top and at the bottom of a building are 730 mm Hg and 755 mm Hg, respectively, determine the height of the building. Assume an average air density of 1.18 kg/m³.

Unit—3

5. (a) The water in a 25 m deep reservoir is kept inside by a 150 m wide wall whose cross-section is an equilateral triangle, as shown in Fig. 3. Determine (*i*) the total force (hydrostatic + atmospheric) acting on the inner surface of the wall and its line of action and (*ii*) the magnitude of the horizontal component of this force. Take $P_{\rm atm}$ 100 kPa :

(b) The hull of a boat has a volume of 150 m³, and the total mass of the boat when empty is 8560 kg. Determine how much load this boat can carry without sinking (i) in a lake and (ii) in seawater with a specific gravity of 1.03. 4+4

8J**/1024**

(Turn Over)

7

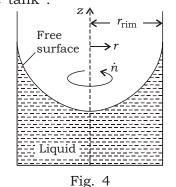
5

10

8J**/1024**

(Continued)

8


- **6.** (*a*) What are the Lagrangian and Eulerian descriptions of fluid motion?
 - (b) A steady, incompressible, twodimensional velocity field is given by the following components in the *xy*-plane :

u 1·1 2·8x 0·65y, v 0·98 2·1x 2·8yCalculate the acceleration field (find

expressions for acceleration components a_x and a_y), and calculate the acceleration at the point (x, y) (2, 3). 6+4

UNIT-4

- **7.** (a) Define path line and streak line. What do they indicate? 4+3
 - (b) A cylindrical tank of water rotates in solid-body rotation, counterclockwise about its vertical axis at angular speed \dot{n} 360 rpm as shown in Fig. 4. Calculate the vorticity of fluid particles in the tank :

5

8

8. (a) What is a boundary layer? What causes a boundary layer to develop?

5

Consider fully developed (b)twodimensional Poiseuille flow-flow between two infinite parallel plates separated by distance h, with both the top plate and bottom plate stationary, and a forced pressure gradient dP/dxdriving the flow as illustrated in Fig 5. (dP/dx is constant and negative). The flow is steady, incompressible and twodimensional in the *xy*-plane. The velocity components are given by

$$u \quad \frac{1}{2} \frac{dP}{dx} (y^2 \quad hy), \quad v \quad 0$$

where is the fluid's viscosity. Is this flow rotational or irrotational? If it is rotational, calculate the vorticity component in the z-direction. Do fluid particles in this flow rotate clockwise or counterclockwise?

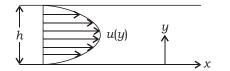
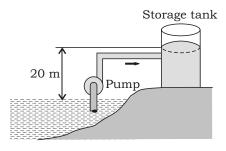


Fig. 5

8J**/1024**


(Continued)

Unit—5

- **9.** (a) Define mass and volume flow rates. How are they related to each other? Does the amount of mass entering a control volume have to be equal to the amount of mass leaving during an unsteady-flow process?
 - (b) A desktop computer is to be cooled by a fan whose flow rate is $0.34 \text{ m}^3/\text{min}$. Determine the mass flow rate of air through the fan at an elevation of 3400 m where the air density is 0.7 kg/m^3 . Also, if the average velocity of air is not to exceed 110 m/min, determine the diameter of the casing of the fan. 10
- (a) Express the Bernoulli equation in three different ways using (i) energies, (ii) pressures and (iii) heads.
 - (b) Water is pumped from a lake to a storage tank 20 m above at a rate of 70 L/s while consuming 20.4 kW of electric power as shown in Fig. 6. Disregarding any frictional losses in the pipes and any changes in kinetic

(8)

energy, determine *(i)* the overall efficiency of the pump-motor unit and *(ii)* the pressure difference between the inlet and the exit of the pump : 5+4

 $\star \star \star$

5