2019/EVEN/12/31/AE-405/357

(2)

2019

B.Tech Even Semester (CBCS) Exam., May-2019

AGRICULTURAL ENGINEERING

(4th Semester)

Course No.: AE-CC-15

(Post-Harvest Operations)

Full Marks: 50
Pass Marks: 15

Time: 2 hours

Note: 1. Attempt any five questions.

- 2. Begin each answer in a new page.
- 3. Answer parts of a question at a place.
- 4. Assume reasonable data wherever required.
- 5. The figures in the right margin indicate full marks for the questions.
- **1.** Define agricultural processing. Why is it required? Discuss all the unit operations in brief which are generally performed on paddy/wheat.

2. Explain the following:

 $5 \times 2 = 10$

10

6

- (a) CFTRI method
- (b) Pressure Parboiling Method
- **3.** Discuss the aeration of grain and its benefits. Also describe with neat sketch, various configurations of duct used for air distribution inside the grain mass. 4+6=10
- **4.** An RCC cylindrical grain storage bin has internal diameter of 5 m and is 20 m deep. It is completely filled with paddy weighing 600 kg/m³. The angle of internal friction for paddy can be taken as 35° while the angle of friction between paddy and bin wall is 30°. The ratio of horizontal and vertical pressure intensity (*k*) is 0·4. Calculate the lateral pressure intensity at 2·0 m interval.
- **5.** (a) Differentiate thin layer drying and deep bed drying. Also write the equation for rate of drying in thin layer drying.
 - (b) Define the following terms: $1\times4=4$
 - (i) Humidification
 - (ii) Relative humidity
 - (iii) Dew-point temperature
 - (iv) Handerson's equation

J9/1963

(Turn Over)

J9**/1963**

(Continued)

6.	Write short notes on the following: $2\frac{1}{2} \times 4 = 10$		10
	(a)	Degree of Milling	
	(b)	Equilibrium Moisture Content (EMC)	
	(c)	Hysteresis Effect	
	(d)	Thermal Conductivity	
7.	(a)		
		and dry basis. Establish a relation between them.	5
		Socwood thom	Ü
	<i>(b)</i>	Write advantage and disadvantage of	_
		parboiling.	5
8.	(a)	Explain all the three laws associated	
0.	(<i>u</i>)	with size reduction.	6
	<i>a</i> \		
	(b)	How much power is required to crush 2 t/hr of material if 80% of the feed	
		passes through IS sieve no. 480	
		(4.75 mm opening) and 80% of the	
		product passes through IS sieve no. 50 (0.5 mm opening)? Given the work index	
		of the material is 6.30 .	4

* * *