2018/ODD/12/31/AE-504/424

B.Tech Odd Semester (CBCS) Exam., December—2018

AGRICULTURAL ENGINEERING

(5th Semester)

Course No. : AE-CC-24

(Thermal Operations in Food Processing)

Full Marks : 50Pass Marks : 15Time : 2 hours

- Note: 1. Answer any five questions.
 - 2. Begin each answer in a new page.
 - 3. Answer parts of a question at a place.
 - 4. Assume reasonable data wherever required.
 - 5. The figures in the margin indicate full marks for the questions.
 - **1.** (a) Derive an expression for overall heat transfer coefficient (U) for a double-pipe heat exchanger. Explain the various terms in this expression.
 - (b) Define the following : 3
 - (i) Nusselt number
 - (ii) Prandtl number

(2)

- **2.** (a) By using Newtonian cooling, derive an expression for calculating temperature of a body at any instant of time. Assume thermal resistance of body is zero.
- 6
- (b) An electric wire having a diameter of 1.5 mm and covered with a plastic insulation (thickness = 2.5 mm) is exposed to air at 300 K and h_0 20 W/m²-K. The insulation has a K of 0.4 W/m-K. It is assumed that the wire surface temperature is constant at 400 K and is not affected by covering.
 - *(i)* Calculate the value of the critical radius.
 - (ii) Calculate the heat loss per meter of wire length with no insulation.
- **3.** (a) What is heat exchanger? Discuss different types of heat exchanger with

5

5

(b) Hot water at 95 °C is used in a plate heat exchanger for heating 2 kgs⁻¹ fruit juice from 45 °C to 75 °C. Specific heat capacity of fruit juice is 3.7 kJkg⁻¹K⁻¹. Final temperature of the hot water is 70 °C. Overall heat transfer coefficient is 1122 Wm⁻²K⁻¹. Heat transfer area is 12 75 m². What will be the log mean temperature correction factor?.

neat sketch.

7

(Continued)

(3)

- **4.** (a) Discuss the following :
 - (i) D value
 - (ii) Z value
 - (b) A suspension, containing 3 10⁵ spores of organism A having a D value of 1.5 min at 121.1°C and 8 10⁶ spores of organism B having a D value of 0.8 min at 121.1°C, is heated at a uniform constant temperature of 121.1°C. Calculate the heating time for this suspension at 121.1°C needed to obtain a probability of spoilage of 1/1000.
- **5.** (a) Discuss the following : $1\frac{1}{2}\times5=7\frac{1}{2}$
 - (i) Pasteurization
 - (ii) Sterilization
 - (iii) Equilibrium moisture content (EMC)
 - (iv) Falling rate drying
 - (v) Bound moisture
 - (b) The F value at $121 \cdot 1^{\circ}$ C is equivalent to 99.999% inactivation of a strain of C. Botulinum is $1 \cdot 2$ min. Calculate the D_0 value of this organism. $2^{1/2}$
- 6. (a) Explain the freeze drying process with the help of neat sketch and also mention the advantages of freeze drying system.

 (b) Define effectiveness of a heat exchanger.
Also write the expression for effectiveness of parallel flow heat exchanger.

4

6

4

- **7.** (a) Define water activity. Explain the method for measurement of water activity at high moisture content.
 - (b) An evaporator is used to concentrate orange juice. A feed of 2160 kg/h of a solution containing 10% solids is evaporated producing 74% total solids. Calculate the weight of solution produced and amount of water removed.
- 8. (a) Discuss the different physical and chemical properties of a solution which affect the design of evaporator.
 - (b) Calculate the water activity of a 50% sucrose solution. (Given K = 27, molecular weight of sucrose is 342) 4

 $\star \star \star$

6

4