2018/ODD/12/31/AE-704/429

B.Tech Odd Semester (CBCS) Exam., December—2018

AGRICULTURAL ENGINEERING

(7th Semester)

Course No. : AEEL-04

[Elective Discipline—IV (Aquacultural Engineering)]

 $\frac{Full Marks : 50}{Pass Marks : 15}$

Time: 2 hours

- *Note* : 1. Answer any **five** questions.
 - 2. Begin each answer in a new page.
 - 3. Answer parts of a question at a place.
 - 4. Assume reasonable data wherever required.
 - 5. The figures in the margin indicate full marks for the questions.
- (a) Describe the significance and present status of aquacultural engineering in India. 2+2=4

(2)

(b) Write short notes on the following :

1½×4=6

- *(i)* Hydraulic jump
- (ii) Critical depth
- (iii) Prismatic channel
- (iv) Alternate depths
- **2.** (a) Show that the relation between the alternate depths in rectangular channel can be expressed as

$$y_c^3 \quad \frac{2y_1^2 \quad y_2^2}{(y_1 \quad y_2)} \qquad 5$$

- (b) Develop the expressions for geometric elements (area, wetted perimeter, hydraulic radius, hydraulic depth and section factor) of circular channel sections.
- (a) Describe the factors which can affect the solubility of oxygen in aquacultural pond.
 - (b) What do you mean by 'Bohr Root' effect? 4
- **4.** (*a*) What do you mean by dike? Explain the design consideration of main dike. 1+5=6
 - (b) Show that cost of construction of squarish pond is cheaper than the rectangular pond for constant area of pond.

J9**/960**

(Turn Over)

J9**/960**

(Continued)

(3)

5.	(a)	Differentiate between tide-fed farm andpump-fed farm.4
	(b)	Design a pumping unit system for a semi-intensive shrimp farm as per the details given below : 6
		Water holding capacity of each pond = 10000 m ³
		Number of ponds = 10
		Availability of electricity in
		the area = 5 hours (maximum)
		Daily rate of water exchange = 20%
		Head up to which water is
		to be lifted = 5 m
		Gross efficiency of the pump = 60%
6		
0.	(a)	What is aeration? Explain the necessityof aerator in intensive aquaculturepond.1+3=4
0.	(a) (b)	What is aeration? Explain the necessity of aerator in intensive aquaculture pond.1+3=4Calculate the SOTR and SAE values of 2 kW cascade aerator. The results of standard test are given below :6
0.	(a) (b)	What is aeration? Explain the necessity of aerator in intensive aquaculture pond. $1+3=4$ Calculate the SOTR and SAE values of 2 kW cascade aerator. The results of standard test are given below : 6 The test tank contained 200 m ³ of clean tap water. The test was run to determine that the (Cs) ₂₅ of the basin was 6.8 mg/L. 20% and 80% saturation were considered. DO at 20% saturation = 1.36 mg/L in 11.2 min

(4)

DO at 80% saturation = 5.44 mg/Lin 53 min (Cs)₂₀ = 9.07 mg/L

- **7.** (*a*) With neat sketch, explain a typical recirculatory aquaculture system.
 - (b) What is the importance of nitrogen removal unit and UV disinfection unit in recirculatory aquaculture system?4

6

8. Explain the design consideration of all components of commercial carp hatchery. 10

 \star \star \star

J9—100**/960**