2019/EVEN/ECOH-203 (A/B)/167

TDC Even Semester Exam., 2019

ECONOMICS

(Honours)

(2nd Semester)

Course No. : ECOH-203

Full Marks : 50Pass Marks : 17

Time : 2 hours

The figures in the margin indicate full marks for the questions

Science students will answer Option—A and Arts students will answer Option—B

OPTION—A

(For Science Students)

(ELEMENTS OF MATHEMATICAL ECONOMICS)

Course No. : ECOH-203 (Science)

Answer five questions, taking one from each Unit

Unit—I

1. Given

5 8 6 A 12 13 6 11 10 9

J9**/1357**

(Turn Over)

(2)

	(a)	ind maximin and minimax.						
	(b)	Is there a saddle point? Which element is it?						
	(c)	What are the optimal strategies for the two players?	2					
	(d)	Can you obtain payoff to player 2?	2					
2.	(a)	Explain two-person zero-sum game.	6					
	(b)	What are the limitations of game theory?	4					
		Unit—II						
3.	G. (a) Given the input coefficient matrix							
		$A \qquad \begin{array}{cccc} 0 & 4 & 0 & 1 \\ 0 & 7 & 0 & 6 \end{array}$						
		and output vector						
		x 176 5 558 8						
		(i) Find the gross value added.						
		(<i>ii</i>) Find the output level disposal to final demand.						
		(iii) Show that the total disposal to final demand is equal to the total value	C					
		added. $4+3+1$	=8					

(b) State Hawkins-Simon condition.

J9**/1357**

(Continued)

2

4. The following table gives the input-output coefficients for a two-sector economy consisting of agriculture and industry :

Input Industry	Α	М			
Α	0.10	0.50	and	F	300
М	0.20	0.25	unu	1	100

- (a) Find the gross outputs of the two industries.
- (b) If the input coefficients for labour for the two industries are respectively 0.5 and 0.6, then find the total units of labour required.

(c) Check Hawkins-Simon condition.

Unit—III

5. Given

	01	03	01		20
Α	0	0 2	0 2	and F	0
	0	0	03		100

- (a) Find the output levels for three sectors consistent with the model.
- *(b)* Explain economic meaning of third-column sum.
- (c) Explain economic meaning of first row sum.

(4)

Write a note on dynamic input-output **6.** (a) model. 6 Mention the limitations of input-output (b)model. 4 UNIT-IV What are the different components of a **7.** (a) linear programming problem? Construct a linear programming problem taking a hypothetical example. 2+3=5Solve the following linear programming (b)problem by graphic method : 5 Minimize $f \quad 0 \quad 6x_1 \quad x_2$ subject to $10x_1 \ 4x_2 \ 20$ $5x_1 \quad 5x_2$ 20 $2x_1 \quad 6x_2 \quad 12$ $x_1, x_2 = 0$ Solve the following linear programming **8.** (a) problem by simplex method : 6 Maximize $2x_1 \quad 5x_2$ subject to $x_1 4x_2$ 24 $3x_1 4x_2$ 21 $x_1 \quad x_2$ 9 where, $x_1, x_2 = 0$

5

3

2

6

2

2

J9**/1357**

(Continued)

- (b) Define the following :
 - (i) Infeasibility
 - (ii) Unbounded solutions

UNIT—V

- **9.** (a) Give primal as
 - Maximize $f 2p_1 6p_2$ subject to

Find the dual of above primal.

- (b) Define duality. Prove that the dual of the dual is the primal. 2+5=7
- 10. (a) Give economic interpretation of duality taking a hypothetical example.5
 - (b) Mention the limitation of linear programming. 5

OPTION-B

(For Arts Students)

(MATHEMATICS FOR ECONOMICS)

Course No. : ECOH-203 (Arts)

Answer five questions, taking one from each Unit

Unit—I

- 1. (a) Find the solutions from the following : $3 \times 2 = 6$ (i) $\frac{dy}{dt}$ 3y 2; y(0) 4
 (ii) $\frac{dy}{dt}$ t^2y $5t^2$; y(0) 6
 - (b) Derive the following formula using four-step procedure : 4

 $Mdy \quad Ndt \quad - _t \quad Mdy \quad dt \quad c$

2. (*a*) Given the demand and supply functions

$$\begin{array}{cccc} Q_d & p & \frac{dp}{dt} \\ Q_s & p & (\ , \ , \ , \ 0) \\ \text{and } \frac{dp}{dt} & (Q_d \quad Q_s) \end{array}$$

where is the adjustment coefficient. Find the time path of price.

7

(Turn Over)

 $2 \times 2 = 4$

3

J9**/1357**

(Continued)

(7)

(b) What restrictions on the parameter would ensure dynamic stability?

Unit—II

3. (a) If the short-run total cost function is

 $C 2Q^3 15Q^2 30Q 16$

then find out the level of output at which AVC is minimum and show that MC = AVC at that level of output. 3+2=5

- (b) In a competitive market with demand function Q_d 30 3p and supply function Q_s 5 2p respectively. If government imposes a tax t per unit of output, find the value of tax rate which corresponds to maximum total revenue. What will be the equilibrium output after tax? 3+2=5
- **4.** (a) If $U = x\sqrt{y}$ be a utility function and 4x = y = 48 is a budget constraint, then find the equilibrium commodity bundle of x and y.
 - (b) Calculate the elasticity of supply for the following equation at p = 10: 5

S 77 4p p^2

(8)

UNIT—III

- 5. (a) Verify whether the following functions are homogeneous : $3 \times 2=6$ (i) $f(x, y) \sqrt{xy}$ (ii) $f(x, y) 2x y 3\sqrt{xy}$
 - (b) State and prove Euler's theorem using a linear homogeneous production function.
- **6.** (a) Given the production function

Q AK L

Show that1 implies increasingreturns to scale.5

- (b) Show that the production function
 - Q aK bL

which is linearly homogeneous does not possess unitary elasticity of substitution between *L* and *K*. 5

UNIT—IV

7. (a) Explain the Leontief model of input-output analysis. 7

J9/1357

J9**/1357**

(Turn Over)

5

3

(Continued)

(9)

(b) Verify whether Hawkins-Simon conditions are true for the following technological coefficient matrix :

 $A = \begin{array}{ccc} 0 & 4 & 0 & 1 \\ 0 & 7 & 0 & 6 \end{array}$

8. Given the input coefficient matrix

0 05 0 25 0 34 A 0 33 0 10 0 12 0 19 0 38 0

and final demand vector

1800 D 200 900

(a) Find the output level.

(b) Explain the economic meaning of the elements 0.33 and 200.(c) Check the Hawkins-Simon conditions

for the above.

Unit—V

9. (a) Discuss the importance and limitations of input-output analysis. 3+3=6

(10)

(b) Find the gross value added from the technological coefficient matrix 0 2 0 3 0 2 04 01 02 Α 010303 and output vector 25 Χ 21 18 4 **10.** (a) How is closed Leontief input-output model different from the open model? 4 Find the final demand vector *D* that is (b) consistent with output vector 2091 X2270 1699 when the input coefficient matrix is the following : 030203 010304 Α 02030 6 $\star \star \star$

3

5

3