2019/TDC/EVEN/ECOHC-202T/061

TDC (CBCS) Even Semester Exam., 2019

ECONOMICS

(2nd Semester)

Course No. : ECOHCC-202T

(Mathematical Methods in Economics-II)

Full Marks : 70 Pass Marks : 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

UNIT—I

- **1.** Answer any *two* of the following questions : $2 \times 2=4$
 - (a) Define differential equations.
 - (b) Write the general solution of differential equation of the form

$$\frac{dy}{dx}$$
 ay b

(c) Solve the following equation :

$$\frac{dy}{dx}$$
 ae^y

J9/2183

(Turn Over)

2. Solve the following equations : 3+3+4=10(a) $y(1 x) x \frac{dy}{dx} 0$ (b) $\frac{dy}{dx} 3x^2y 3x^2$ (c) $2xdy \frac{2}{3}ydx 0$

OR

3. (a) The demand and supply functions, when p is the price, Q_d is quantity demanded and Q_s is the quantity supplied, are given as

 $\begin{array}{ccccc} Q_d & a & bp & (a, b & 0) \\ Q_s & c & dp & (c, d & 0) \\ \hline \frac{dp}{dt} & (Q_d & Q_s) & (& 0) \end{array}$

Analyze the market model for stability. 6

(b) Solve $\frac{d^2y}{dx^2}$ $7\frac{dy}{dx}$ 12y 0. 4

Unit—II

4. Answer any *two* of the following questions :

 $2 \times 2 = 4$

- (a) Define idempotent matrix.
- (b) What is linear transformation?
- (c) Find the following determinant's value :

J9**/2183**

(Continued)

(2)

5.	(a)	If	
		$\begin{array}{ccc} A & 3 & 1 \\ A & 1 & 2 \end{array}$	
		find A^2 5A 71.	4
	(b)	Evaluate : $A \begin{vmatrix} 2 & 3 & 1 \\ 3 & 4 & 2 \\ 2 & 0 & 2 \end{vmatrix}$ 0	3
	(C)	Prove that if $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	
		then A^{-1} $\begin{array}{c} \frac{10}{12} & \frac{8}{12} \\ \frac{4}{12} & \frac{2}{12} \end{array}$	3
		OR	
6.	(a)	Using matrix inversion, solve the following linear system of simultaneous equations : $y \ 2x \ 6$	4
		<i>y</i> 4 <i>x</i> 18	
	(b)	Solve the following linear market model by using Cramer's rule : Q_d 50 2p Q_s 10 3p Q_d Q_s	6
9/2	183	(Turn Over	-)

(4)

UNIT—III

- 7. Answer any two of the following questions : 2×2=4
 - (a) Define differentiable function.
 - (b) Find the total differential of $z \sqrt{x y}$.
 - (c) If $u (ax_1 bx_2 c\sqrt{x_1x_2})$, find $\frac{u}{x_1}$.
- **8.** (a) Solve the following functions : (*i*) Given $y \, 4x_1x_2 \, x_1^2$ where $x_1 \quad 3x_2 \quad 5$, find out total derivative $\frac{dy}{dx_2}$. 2
 - (ii) If the utility function is $u \log(ax_1 bx_2 c\sqrt{x_1x_2})$ obtain the ratio of marginal utilities. 3 Given $z x^3 e^{2y}$. Find all the partial (b)
 - derivatives of second order. 5

J9

J9**/2183**

9.	(a)	What is homogeneous function?	3
	(b)	Given the function $u = Ax^b y^c$; A , b and c are constants.	
		<i>(i)</i> Find the conditions under which this is a linear homogeneous function.	3
		(i) Apply Euler's theorem if these conditions hold true.	4

Unit—IV

- **10.** Answer any *two* of the following questions : $2 \times 2=4$
 - (a) Given the function z = f(x, y), mention the first and second order conditions for maximization.
 - (b) Mention the geometric definition of concavity and convexity for a two-variable function $z = f(x_1, x_2)$.
 - (c) Define quasiconvex function.
- 11. (a) Mention the first and second order characterization of convex function with more than one explanatory variable.

J9**/2183**

(6)

(b) Derive the first and second order conditions in order to show that indifference curve is negatively sloped and convex to the origin taking the utility function

u f(x, y)

where, u = total utility. x and y are the quantities of two commodities.

OR

- **12.** (a) How to construct Lagrange function? 2
 - (b) A producer desires to minimize his cost of production C 2L 5K, where L and K are the inputs, subject to the satisfaction of the production function Q LK. Find the optimum combination of L and K in order to minimize cost of production when output is 40.

Unit—V

- **13.** Answer any *two* of the following questions : $2 \times 2=4$
 - (a) Define input coefficient matrix.
 - (b) Mention Hawkins-Simon conditions.
 - (c) Write the economic meaning of $\prod_{i=1}^{n} a_{ij} = 1$ in Leontief static open model.

J9**/2183**

(Continued)

8

8

(7)

(b) Mention the limitations of input-output analysis.

6

4

indeterminate.

 $\star \star \star$

J9-720/2183 2019/TDC/EVEN/ECOHC-202T/061