2019/EVEN/BCSH-202/289

TDC Even Semester Exam., 2019

COMPUTER SCIENCE

(Honours)

(2nd Semester)

Course No. : BCSH-202

(Discrete Mathematics)

Full Marks : 35 Pass Marks : 12 Time : 2 hours

The figures in the margin indicate full marks for the questions

Answer five questions, taking one from each Unit

UNIT—I

- **1.** (a) What is proposition?
 - (b) What are conjunction and disjunction? 2
 - (c) Verify that the proposition p (p q) is a tautology.
- **2.** (a) Show that the propositions $(p \ q)$ and $p \ q$ are logically equivalent.

J9**/1386**

2

3

3

(2)

	(b)	Test	the	vali	dity	of	the	follo	wing	
		argur	nent	:						4
		If I study, then I will not fail in Maths.								
		If I do not play basketball, then								
							I	will st	udy.	
		But I failed in Maths.								
		There	efore,	Ι	mu	st	have	pl	ayed	
		baske	etball.							
	Unit—II									
3.	(a)	Show that the following are equivalent :						4		

A B, A B A

- (b) Determine the power set of $A \{a, b, c, d\}$. 3
- 4. (a) Explain with an example, the difference between function and relation.
 (b) Let X {1, 2, 3, 4}. Determine whether or
 - not each relation below is a function from X into X: (i) $f = \{(2,3), (1,4), (2,1), (3,2), (4,4)\}$
 - (*ii*) $h = \{(2, 1), (3, 4), (1, 4), (2, 1), (4, 4)\}$
 - (c) Consider the following relation in A:
 - $R \quad \{(1,1), (2,2), (2,3), (3,2), (4,2), (4,4)\}$
 - (i) Is R reflexive? Give reasons.
 - (ii) Is R symmetric? Give reasons. 2
- J9**/1386**

(Continued)

2

(3)

UNIT—III

5.	Consider the set N of positive integers and let denote the operation of least common multiple (LCM) on N .							
	(a)	Is $(N,)$ a semigroup?	3					
	(b)	Find the identity element of .						
	(c)	Which elements in N , if any, have inverses and what are they?	2					
6.	(a)	Let A $\{a, b\}$. Find a regular expression r such that $L(r)$ consists of all words w that contain an even number of a 's.	2					
	(b)	Define context-free grammar and regular grammar.	5					
		UNIT—IV						
7.	(a)	Explain with examples a partially ordered set and Hasse diagram.	3					
	(b)	Let D_m denote the positive divisors of m ordered by divisibility. Draw the Hasse diagrams of— (<i>i</i>) D_{12}						
		(<i>ii</i>) D ₁₅	4					
8.	(a)	Explain what is meant by a lattice.	3					
	(b)	Prove that $(a \ b) \ a \ b$.	4					

(4)

Unit—V

9.	(a)	Define	graph,	complete	graph	and	
		degree of a vertex in a graph.					

- (b) Define a cut point. 2
- 10. Prove that a finite connected graph G is Eulerian if and only if each vertex has even degree.7

$\star \star \star$