2019/TDC/EVEN/CSCHC-202T/045

TDC (CBCS) Even Semester Exam., 2019

COMPUTER SCIENCE

(2nd Semester)

Course No. : CSCHCC-202T

(Data Structure)

Full Marks : 50 Pass Marks : 20

Time : 3 hours

The figures in the margin indicate full marks for the questions

- 1. Answer the following questions (any ten) :
 - (a) What is a sparse matrix? Explain with an example.
 - (b) Distinguish between a linear and a non-linear data structure.
 - *(c)* List out any two differences between doubly linked list and singly linked list.
 - (d) How is de-queue different from a normal queue?
 - (e) Define depth and height of a tree.

(2)

	(f)	What is meant by an AVL tree?	1
	(g)	Which data structure is used for performing recursion? Why?	1
	(h)	Write the average case and worst case time complexity of linear search.	1
	(i)	What do you mean by hash function?	1
	(j)	Define stacks and queues with an example.	1
	(k)	List out two applications of tree.	1
	(l)	List out one merit and demerit of sequential allocation.	1
	(m)	What is the difference between hashing and indexing?	1
	(n)	When is a binary search best applied?	1
		Unit—I	
2.	(a)	Write down the procedure for insertion of new element and deletion of an element from stack.	4
	(b)	Evaluate the following postfix expression :	
		abc de /- where a 5, b 6, c 2, d 12, e 4	4

J9**/2167**

1

1

1

1

1

J9**/2167**

(3)

OR

- **3.** (a) What are the applications of stack? Explain any one application in detail.
 - 1+3=4

4

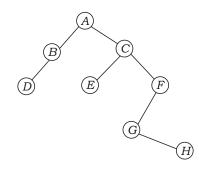
4

(b) Convert the given infix expression to postfix form and also show the stack implementation :

 $P \quad A((B \quad C) \quad (D \quad E) \quad F) / G$

Unit—II

- **4.** (a) Write an algorithm demonstrating the various stack operations. 4
 - (b) Write an algorithm for insertion of a node at specified position in a singly linked list.


OR

- 5. (a) Write an algorithm for deletion of a node at the end in a doubly linked list.
 - (b) Write a function for single linked list with integer data to search an element in the list that is unsorted.

UNIT—III

6. (*a*) Traverse the given tree using in-order and post-order transversals. Given tree :

2+2=4

 (b) Write a recursive function that calculates the fibonacci series. List out the advantages and limitations of recursion.

OR

7. (a) The in-order and pre-order transversal of a tree are given below :

In-order : Q A Y P Z C B X

Pre-order : Z A Q P Y X C B

- *(i)* Construct the corresponding binary tree.
- (\ddot{u}) Determine the post-order transversal of the tree drawn. 3+1=4

J9**/2167**

(5)

(b) Make a binary tree from the following elements :
14, 15, 4, 9, 7, 18, 3, 5, 16, 4, 20, 17, 9, 14, 5

Discuss about threaded binary trees in brief. 2+2=4

Unit—IV

- (a) Apply insertion sort, showing the various passes to sort the array *A* where *A* [77, 33, 44, 11, 88, 22, 65, 55].
 - (b) Explain linear search with the help of suitable example.

OR

- **9.** (a) What is searching? Discuss the difference between binary search and linear search. 1+3=4
 - (b) Perform selection sort operation on the given numbers below. Give all steps in clear way :
 - *A* {66, 35, 48, 55, 62, 77, 25, 38, 18, 40, 30, 20}

(6)

UNIT—V

- 10. (a) What is meant by rehashing? Explain how you resolve hash clashes by open addressing method. 1+3=4
 - (b) Explain in detail the Hash Tab Recording technique. 4

OR

- **11.** (a) Explain two hashing functions in detail with an example. 2+2=4
 - (b) What is collision resolution technique in hashing? Explain.4

 $\star\star\star$

4

4