2019/TDC/EVEN/BCADSC/ BCAGEC-201T/008

TDC (CBCS) Even Semester Exam., 2019

COMPUTER APPLICATION

(2nd Semester)

Course No.: BCADSC-201T/BCAGEC-201T

(Computer System Architecture)

Full Marks: 70
Pass Marks: 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

UNIT—I

- **1.** Answer any *two* from the following : $2 \times 2 = 4$
 - (a) Demonstrate by means of truth table of the validity of the De Morgan's theorems for three variables.
 - (b) Obtain the simplified expressions in sum of products using three-variable map

F(x, y, z) (0, 1, 5, 7)

2

(Turn Over)

(c) Explain canonical and standard forms of Boolean algebra. 2

(2)

- **2.** Answer any *one* from the following:
 - (a) Given Boolean function

F xy x y y z

- (i) Implement it with AND, OR and NOT gates.
- (ii) Implement it with only OR and NOT gates.
- (iii) Implement it with only AND and NOT gates. 2+4+4=10
- (b) (i) Explain full adder with logic diagram.
 - (ii) Explain *D* flip-flop with the working principle.
 - (iii) Draw the logic diagram of 4 1 multiplexer.
 - (iv) What is binary counter? 3+2+3+2=10

UNIT—II

- **3.** Answer any *two* from the following : $2 \times 2 = 4$
 - (a) Convert the hexadecimal 2AC5 D to octal and binary.
 - (b) Perform the subtraction with the binary numbers using 2's complement

 $(100)_2$ $(110000)_2$ 2

(c) What is Gray code? Give example. 2

J9**/2130** (Continued)

4.	Ans	wer any <i>one</i> from the following:	10	6.	Ans	wer any <i>one</i> from the following:	10	
	(a)	(i) Explain flowchart for add and subtract operations of signed magnitude data.			(a) (b)	What is a program interrupt? Explain the process of interrupt cycle. 5+5= With a neat block diagram of a control	:10	
		(ii) How is floating-point number represented in computer system? 7+3=	=10		(6)	unit, explain its component. Also show the timing signals with clock pulses. 7+3=1		
	(b)	Draw the flowchart of Booth algorithm for multiplication of signed 2's				Unit—IV		
		complement numbers. Multiply (9) (13) using Booth algorithm. 3+7=		7.	Ans	wer any two from the following: 2×2	!=4	
					(a)	An 8-bit register contains the binary value 10011100. What is the register value after an arithmatic shift right?	2	
		Unit—III			(b)	How do selective-set and selective-clear		
5.	Ans	wer any <i>two</i> from the following: 2×2	2=4		(2)	work?	2	
	(a)	What is register transfer language? Give example.	2		(c)	What is reverse polish notation (RPN)? Give example.	2	
	(b)	Draw the block diagram and timing diagram for the given microoperation		8.		Answer any <i>one</i> from the following :		
		P: R2 R1	2		(a)	Explain general register organization with block diagram and control word.	10	
	(c)	Define register reference instruction and input-output instruction.	2		(b)	Explain different addressing modes of the instruction.	10	

(5)

Unit—V

9.	Ans	wer any <i>two</i> from the following:	×2=4				
	(a)	What is interrupt?	2				
	(b)	(b) What is cycle stealing?					
	(c)	What is input-output processor?	2				
10.	0. Answer any <i>one</i> from the following:						
	(a)	(i) How does DMA work? Explain using diagram.	1				
		(ii) Explain strobe control method o asynchronous data transfer. 5+					
	(b)	(i) Explain different modes of data transfer.	ā				
		(ii) What is the difference between isolated I/O and memory mapped I/O?					
	(iii) What are the advantages of isolated I/O and memory-mapped I/O?						
		5+3+	2=10				
* * *							

* * *