10. (a)	Write the limitation of Hartree Fock theory.	2
---------	--	---

- (b) What is electron-correlation? 3
- (c) Write the usefulness of DFT.
- (d) What molecular properties can be calculated using DFT? 4

5

 $\star \star \star$

PG (CBCS) EVEN SEMESTER EXAMINATION, 2023

PHYSICS

4th Semester

Course No. : PHYCC - 403

(Molecular Spectroscopy)

Full Marks : 70 Pass Marks : 28

Time : 3 hours

The figures in the margin indicate full marks for the questions (Answer five questions, taking one from each unit)

<u>UNIT - I</u>

- 1. (a) Derive the energy and wave function of H_2 molecule using LCAO method. 12
 - (b) Define bond order. Calculate bond order of H_2 molecule. 2
- 2. (a) Write the conditions for generating an effective molecular orbital under LCAO method. 2
 - (b) Write the electronic configuration of N_2 molecule and N_2^+ ions and (i) explain the type of bonding in them (ii) which one has the longer equilibrium bond length? (iii) which one has the larger disociation energy? 12

2023/EVEN/08/21/PHY-403/058

<u>UNIT - II</u>

- 3. (a) Write a note on Born-oppenheimer approximation. 7
 - (b) The J = 0 to J = 1 rotational absorption line occurs at $1.102 \ge 10^{11}$ cycles/s in ${}^{13}C^{16}O$ and at $1.153 \ge 10^{11}$ cycles/s in ${}^{2}C^{16}O$. Calculate the mass number of the unkonwn carbon isotope. 5
 - (c) What is the main difference between the fluorescence and phosphorescence phenomena?
- 4. (a) Write the salient features of the pure rotational spectra. 5
 - (b) The transition J = 6 to J = 5 in OH-radical occurs at 227 cm⁻¹. Regarding the molecule to be a rigid rotator, calculate the wavelength of the transition J = 17 to J = 18 4
 - (c) Discuss isotope effect on rotational spectra.

UNIT - III

5

5. (a) Show that the vibrational rotatinal bands are always degraded toward the red. 10

- (b) The fundamental band and the first overtone of AB molecule is at 2143 cm⁻¹ and 4259.7 cm⁻¹. Calculate w_e , $w_e x_e$ and vibrational frequency. 4
- 6. (a) Discuss how the study of vibrational spectrum of a diatomic molecule enables us to determine anharmonicity constant and quilibrium frequency of vibration.
 - (b) What is Raman effect? What is the condition for a molecule to be Raman active.

<u>UNIT - IV</u>

- 7. (a) Both the red and violet degraded bands are observed in electronic band system. Why? 7
 - (b) Discuss vibrational structure of electronic bandsystem in emission.
- 8. The band head of Q-branch lies always at $J = -\frac{1}{2}$, while that of the P - or R - branch may be anywhere. Explain. 14

<u>UNIT - V</u>

9. (a) State and prove Hohenberg-Kohn theorems.

14