- 10. (a) Describe the construction and working principle of germanium detector. 8
 - (b) Explain the functions of the electronic units used in conjunction with semiconductor detectors.

 $\star \star \star$

PG (CBCS) EVEN SEMESTER EXAMINATION, 2023

PHYSICS

4th Semester

Course No. : PHYCC - 402 (Nuclear and Particle Physics)

> Full Marks : 70 Pass Marks : 28

Time : 3 hours

The figures in the margin indicate full marks for the questions (Answer five questions, taking one from each unit)

<u>UNIT - I</u>

- 1. (a) Name the different methods of determining the nuclear size. 2
 - (b) Discuss in detail the determination of nuclear size by electron scattering experiment. 10
 - (c) Explain whether nuclear force is of short range or long range? 2
- 2. (a) Describe the experiment that determines the nuclear magnetic moment. 10
 - (b) Explain the spin dependency of nuclear force in deuteron. 4

<u>UNIT - II</u>

- 3. (a) Define single particle shell model and obtain the magic numbers using harmonic oscillator potential.
 - (b) What are the disadvantages of this model in explaining the nuclear structure.
- 4. (a) Using collective model, find the energy eigen values of the rotational states of a nucleus. 7
 - (b) Describe the vibrational motion of even even nuclei. 7

<u>UNIT - III</u>

- 5. (a) Derive Fermi's momentum distribution for β -decay. 9
 - (b) Fid the selection rules for allowed transitions as well as 1^{st} and 2^{nd} Forbidden transitions in β -decay. 5
- 6. (a) Discuss an experiment that demonstrate parity violation in β-decay.
 9
 - (b) Prove that v_{e} and v_{e} are different particles. 3
 - (c) Explain whether neutrinos are Majorana or Dirac particles.2

<u>UNIT - IV</u>

- 7. (a) Allocate the isospin to the strange particles from the following equations: 5 (i) $\pi^- + p \rightarrow \Lambda^0 + K^0$ (ii) $p + p \rightarrow \Lambda^0 + K^+ + p$ (iii) $\pi^+ + n \rightarrow \Lambda^0 + K^+$ (iv) $\pi^- + p \rightarrow \Sigma^- + K^+$ (v) $\pi^+ + p \rightarrow \Sigma^+ + K^+$
 - (b) What is the evidence for another quantum number color, under which strong interactions are exactly symmetric? How many colors are there? What data are used to determine this number?
 - (c) What are the quark constituents of Σ^{+} , η , π^{0} , Ω^{-} , ψ^{-} , ω^{0} 6
- 8. (a) How muons are experimentally discoverd? 4
 - (b) Write briefly the production of muons and their properties. 2+2=4
 - (c) Explain muon decay with allowed and prohibited decays.

<u>UNIT - V</u>

 Discuss in detail the principle of operation of scintillation counter along with photo multiplier tube.
 14

(Turn Over)