PG EVEN SEMESTER EXAMINATION, 2023

CHEMISTRY

2nd Semester

Course No. : CHM - 553 (Physical Chemistry II)

> Full Marks : 70 Pass Marks : 28

Time : 3 hours

The figures in the margin indicate full marks for the questions (Answer five questions, selecting one from each unit)

<u>UNIT - I</u>

- 1. (a) Discuss the postulates and obtain an expression for Debye Hückel theory. 3+6=9
 - (b) Discuss the variation of the activity coefficient with the molality of different valance types viz., KCl, $CaCl_2$, $LnCl_2$ and $ZnSO_4$.
 - (c) Write short note on concentration cell. 3
- 2. (a) Discuss the assumption of the Born Model. Derive the free energy expression for the ion solvent interaction and comment on the importance of free energy in ion solvent interaction. 2+5+2=9

- (b) Calculate the change in the potential difference between the anode and the solution when the concentration of zinc ion in the solution is increased from 1.00×10^{-3} M to 5.00×10^{-3} M at 21° C. Given F = 96485 Cmol⁻¹ 2
- (c) Define kappa (κ) in Debye Hückel theory and discuss its significance.
 3

<u>UNIT - II</u>

- 3. (a) Discuss the different models of the electrical double layer. 6
 - (b) Write short note on the H_2 - O_2 fuel cell. 4
 - (c) What is the electronation reaction in corrosion? Discuss the factors that affect the electronation reaction.
- 4. (a) Obtain a relation between net current density to the overpotential of the cell. Discuss the two extremes of the overpotential limit. 6+4=10
 - (b) The data below refer to the anodic current through a platinum electrode of area 2.0 cm² in contact with Fe³⁺, Fe²⁺ aqueous solution at 298 K. Calculate the exchange current density and transfer coefficient of the electrode process.

$\eta / m V$	50	100	150	200	250
I/mA	8.8	25.0	58.0	131.0	298.0

<u>UNIT - V</u>

- 9. (a) Derive the expression of the entropy production in a chemical reaction. 7
 - (b) Derive Saxen's relation of the electrokinetic effect and show the interrelation between these effects. 2+5=7
- 10. (a) Derive the expression for entropy production due to heat flow. 7
 - (b) What is phenomenological law? Describe Onsager's reciprocity relations. 3+4=7

<u>UNIT - IV</u>

- 7. (a) Derive Gibbs-Duhem relation for chemical potentials with the composition of the system. 5
 - (b) Show that decrease in Helmholtz work function in any process at constant temperature and volume is equivalent to the maximum work output that can obtained from the system.
 - (c) Deduce the thermodynamic equation of state 3+3=6

(i)
$$\left(\frac{dE}{dV}\right)_T = T \left(\frac{dP}{dT}\right)_V - P$$

- (ii) $\left(\frac{dH}{dP}\right)_T = V T \left(\frac{dV}{dT}\right)_P$
- 8. (a) Assuming an expression for van't Hoff isotherm, derive an expression for van't Hoff isochore. 5
 - (b) Derive the following from of the Gibbs-Helmholtz equation.

$$\left[\frac{d(\Delta G|T)}{dT}\right]_{P} = -\frac{\Delta H}{T^{2}}$$

(c) Show that the isothermal reversible work of expansion for an ideal gas is greater than that for a real gas between the same initial and final states.

<u>UNIT - III</u>

- 5. (a) State and prove Euler's reciprocity relation for exactness. Show that for an ideal gas, work function (W) is not an exact differential. 2+2=4
 - (b) Assuming one mole ideal gas as the working substance in a Carnot cycle, arrive at a definition of entropy.7
 - (c) One mole of an ideal gas is allowed to expand isothermally from 0.02 m³ to 0.2 m³ at 300 K. Calculate the entropy change for the system, surrounding and universe if the expansion is (i) reversible and (ii) irreversible against a constant external pressure of 0.1 atmosphere. 3
- 6. (a) Show that a decrease in Gibb's free energy accompanying in a process at constant temperature and constant pressure is equivalent to the useful work obtainable from the system.
 3
 - (b) Calculate the work done of an expansion of a gas in an isothermally reversible process and show that it is greater than the corresponding irreversible work. 4+3=7
 - (c) Evaluate ΔG and ΔH for the reversible isothermal expansion of a mole of the gas having an equation of the state PV = RT (1+ B/V) from an initial volume V₁ to a final volume V₂ where V₁ and V₂ are the molar volume of the gas in the two states. 4