- (b) Discuss, with illustration, the structural changes that occur in the active site of deoxyHb upon dioxygen binding. In this context, explain the 'co-operativity' effect. 4+2=6
- (c) Draw and briefly discuss the active site structure of oxyhemocyanin including its magnetic behaviour. 3
- 10. (a) Explain, with illustration of active site structures, oxygen transportation by the non-heme iron protein, hemerythrin. Mention its two major point of differences with that of dioxygen transport heme-protein, hemoglobin.

5+2=7

(b) Furnish an account of active site structure of $[Mn_4]$ -cluster protein in Photosystem-II and explain the cyclic e-transfer process along with the oxidation levels. 3+4=7

2022/ODD/08/22/CHM-551/140

PG EVEN SEMESTER EXAMINATION, 2023

CHEMISTRY

2nd Semester

Course No. : CHM - 551 (Inorganic Chemistry II)

> Full Marks : 70 Pass Marks : 28

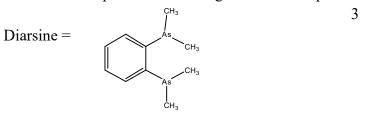
Time : 3 hours

The figures in the margin indicate full marks for the questions (Answer five questions, selecting one from each unit)

<u>UNIT - I</u>

- 1. (a) Find out the relation between orbital magnetic moment (μ_1) and orbital angular momentum quantum number (l).
 - (b) Derive all the Russell-Saunders terms for a p^2 system and indicate the order of these terms. 3+1=4
 - (c) Define ferromagnetism. Plot the magnetic susceptibility (χ) versus temperature (T) for a ferromagnetic substance and briefly discuss. Compound NiF₂ shows weak ferromagnetism in the absence of an external magnetic field. Give reason. 1+2+1=4
 - (d) How does the temperature independent paramagnetism arise? Give example. 3

2. (a) Give an idea of the Russell-Saunders coupling and, in this connection, explain Hund's first and second rules.


2+2=4

- (c) The magnetic moment of the high spin octahedral cobalt(II) complexes is higher than the spin-only magnetic moment. Explain.
- (d) 'The ferrimagnetism is observed in magnetite' explain. 3
- (e) Briefly discuss the antiferromagnetic exchange pathway in the compound (i) $Cu_2(CH_3COO)_4.2H_2O$ and (ii) $K_4[Ru_2OCl_{10}]$ 2+2=4

<u>UNIT - II</u>

- 3. (a) Draw the Orgel diagram of $[CoCl_4]^{2-}$ and show the possible transitions. 3
 - (b) The d-d transitions are Laporte forbidden yet transition metal complexes are colored. Explain.
 - (c) Discuss Nephelauxetic effect. The electronic spectrum of $[Ni(NH_3)_6]Cl_2$ shows bands at 10750, 17500 and 28200 cm⁻¹. Calculate the value of Racah (B) and Nephelauxetic (β) parameter (where B⁰ = 1030 cm⁻¹). 3+4=7
- 4. (a) The color of the aqueous permanganate solution is more intense than aqueous manganous ion. Explain. 3
 - (b) Electronic spectra of $[Co(H_2O)_6]^{2+}$ shows a weak but well resolved absorption band at about 800 cm⁻¹ and a multiple

SCN⁻ forms $[Co(diarsine)_2(NCS)(NO)]^+$ in which N-O distance is 185 pm and CoNO angle is 135°". Explain.

- (e) "NO⁺ is a bad donor but good acceptor while CN⁻ is a good donor but bad acceptor." Explain. 2¹/₂
- 8. (a) Propose a set of reactions for the formation of $[W(C(OCH_3)Ph)(CO)_5]$ starting with hexacarbonyltungsten and other reagents of your choice.
 - (b) Draw the structure of the following: (i) $Ir_4(CO)_{12}$ (ii) $[Co_3(CH)(CO)_9]$ 3
 - (c) Complete the following reactions: (i) $3Co_2(CO)_8 + 2 Co (C_7H_{15}CO_2)_2 + 2H_2 \longrightarrow$ (ii) $3Co_2(CO)_8 + 12Py \longrightarrow$ (iii) $Co_2(CO)_8 + 2NO \longrightarrow$ $1^{1/2}x3=4^{1/2}$
 - (d) What is Wade's rule? Apply Wade's rule to determine the structure of $Os_5C(CO)_{15}$. $3\frac{1}{2}$

<u>UNIT - V</u>

9. (a) Discuss the role and active site structure of $[Fe_3S_4]$ type ferredoxin. State the possible oxidation levels. What happens when the protein is treated with HCl? 3+1+1=5

3

- (b) Explain why $Ti(H_2O)_6]^{3+}$ is violet in solution but become colourless on heating. 2
- (c) Furnish the synthesis and structures of VF_5 and CrF_4 in gas and solid states. 3
- (d) Compare and give reason for the acid-base, redox and magnetic properties MnO, MnO_2 and Mn_3O_7 . 2
- (e) Calculate the magnetic moment for a complex of Ce³⁺ and compare with complex of Ti³⁺.
 3

<u>UNIT - IV</u>

- 7. (a) Assuming the 18-electron rule to be valid, find the number of Os-Os bonds in $Os_4(CO)_{14}$. 2
 - (b) Provide plausible reasons for the differences in v_{co} (IR spectra) of the following compounds :

$$Mo(CO)_{3}(PF_{3})_{3} --- 2040, 1991 cm^{-1}$$

and $Mo(CO)_{3}(PMe_{3})_{3}$ --- 1945, 1851 cm⁻¹ 2

- (c) Starting from $Mn_2(CO)_{10}$ how are the following compounds prepared?
 - (i) $NaMn(CO)_{5}$
 - (ii) MeMn(CO)₅

(iii)
$$[(CO)_5 Mn-Re(CO)_5]$$
 4¹/₂

(d) "The N-O distance in [Co(diarsine)₂NO]²⁺ is 168 pm and the CoNO angle is 180°. Reaction of the complex with

absorption band corresponding to three overlapping peaks at around 20,000 cm⁻¹. Explain the observation. 4

(c) Construct the σ -molecular orbital diagram for a complex of octahedral symmetry. Explain the effect of π -bonding on the Δ value of an octahedral complex. 4+3=7

<u>UNIT - III</u>

- 5. (a) Write the electron configurations of Cerium in Ce (atom), Ce³⁺ ion and $(NH_4)_2[Ce(NO_3)_6]$. Furnish the synthesis, geometry and structure of Ce(NO₃)₄(Cy₃PO)₂ and [Ce(NO₃)₃(Et₃PO)₃]+ from cerium(IV) ammonium nitrate (CAN). 1+4=5
 - (b) Describe the lanthanide separation using (i) Valence change and (ii) ion exchange method. 3
 - (c) Illustrate the process of luminescence (with diagram) in lanthanide complexes and comment on the fluorescence properties of lanthanide elements.
 3+1=4
 - (d) Complete the following reactions, give structures and oxidation states of actinides. 2×1 = 2
 (i) U(Cp*)₂(CH₃)Cl + Li[PhN-N=N-N(H)Ph] →
 (ii) ThCl₄ + TlCp →
- 6. (a) Illustrate the classical (dihydride) and non-classical (dihydrogen) bonding in M(H₂) fragment. Describe the structure and bonding of MH₄(PR₃)₃ (M=Fe, Ru, Os).
 2+2=4