B. Tech Odd Semester Examination, February, 2023

Electronics & Communication Engineering

(3rd Semester)

Course No.: ECE-301 (Electronics Devices)

Full Marks: 50 Pass Marks: 25

Time: 2 hours

- Note: 1. Attempt any five questions.
 - 2. Begin each answer in a new page.
 - 3. Answer parts of a question at a place.
 - 4. Assume reasonable data wherever required.
 - 5. The figures in the right margin indicate full marks for the question.
 - 6. All the mathematical symbols and abbreviations have their usual meanings.
- 1. a) Discuss the concept of Fermi level for semiconductors.
 - b) Derive the expression for Fermi level of extrinsic semiconductors and sketch the position in case of intrinsic, P-type, N-type semiconductors.
 - c) Explain in context to semiconductor, doping and its need. 2+4+4
- 2. a) Draw the energy band diagram of a PN junction and derive the expression for total shift in the energy level.
 - b) A silicon diode has reverse saturation current of 2.5 μ A at 300°K. Find forward voltage for a forward current of 10 mA. 7+3

- 3. a) Explain
 - i) Law of mass action
 - ii) Hall effect
 - iii) Drift and diffusion current
 - iv) Ohmic contact
 - v) Potential barrier
 - vi) Opto-electronic Devices
 - b) Determine the resistivity of germanium.
 - a) In intrinsic condition at K
 - b) With donor impurity of 1 in
 - c) With acceptor impurity of 1 in
 - d) With both the above impurity simultaneously.
 - Given that for germanium at room temperature

$$n_i = 2.5 X \, 10^{13} / cm^3$$
,

 $\mu_p = 1800 \frac{cm^2}{sV}$, and a number of germanium atoms/ $cm^3 = 4.4 \times 10^{22}$. 6+4

- 4. a) What are relative advantages of LCD over LED?
 - b) Draw the bridge rectifier circuit and explain its working giving input and output waveform.
 - c) A half wave rectifier uses a diode with an equivalent forward resistance of 0.3Ω . If the input ac voltage is 10 V (rms) and the load resistance of 2Ω , calculate and in the load. 3+4+3

- 5. a) Explain with circuit diagram, how zener diode can be used as a voltage regulator.
 - b) In CE configuration collector supply voltage , load resistance R_c is 8 K Ω . Draw dc load line. Determine the operating point Q for zero signal if base current is 15 μ A and β is 40. 6+4
- 6. a) Draw the structure of a JFET and explain its principle of operation with neat diagram along with its V-I characteristics.
 - b) Explain why BJTs are called bipolar devices while FETs are called unipolar devices.
 - c) The reverse saturation current of an NPN transistor in common base circuit is 12.5 μ A. For an emitter current of 2 mA, collector current is 1.97 mA. Determine the current 2 gain and base current. 4+2+4

 $\mathbf{V}_{\text{diffs}} = \frac{10\nu}{3800} \frac{cm^2}{3V}$

,

- Explain four distinct regions of the output characteristics of a JFET.
- b) An N-channel JFET has a pinch-off voltage of -4.5 v and $I_{DSS}=9 mA$. At what value of V_{GS} will I_{DS} equal to 3 mA? What is its 9_m at this I_{DS} . 6+4
- 8. a) Explain channel length modulation in MOSFET.
 - b) With the help of neat sketch explain the construction of depletion and enhancement type N-channel MOSFETs.
 - c) How FETs and conventional BJTs are different from each other? 3+5+2