(6)

(iii) The vector

 $U = (2x^{2} + 8xy^{2}z) \hat{\imath} + (3x^{3}y - 3xy) \hat{\jmath} - (4y^{2}z^{2} + 2x^{3}z) \hat{k}$ is not a solenoidal one. 3

3

(iv) $\vec{\nabla} \mathbf{x} [(\hat{e} \mathbf{x} \hat{r}) \mathbf{x} \hat{e}] = 0$, \hat{e} being a unit vector

- (v) Show that $r^n \cdot \vec{r}$ is an irrotational vecor for any value of *n*, but is solenoidal ony if n = -3. 3
- 10. (a) What is orthogonal curvilinear coordinate system? 2
 - (b) For spherical polar co-ordinates, verify the mutual orthogonality of $\frac{\partial \vec{r}}{\partial r} \frac{\partial \vec{r}}{\partial \theta}$ and $\frac{\partial \vec{r}}{\partial \phi} = 4$
 - (c) Compute $\oint [(xy x^2) dx + x^2 y dy]$ over the triangle bounded by lines y = 0, x = 1 and y = x and hence verify Green's theorem. 5
 - (d) What is a tensor? What is meant by rank of a tensor? Define contravariant and co-variant tensors.

PG (CBCS) ODD SEMESTER EXAMINATION, 2022

PHYSICS

1st Semester

Course No. : PHYCC - 102 (Mathematical Physics)

> Full Marks : 70 Pass Marks : 28

Time : 3 hours

The figures in the margin indicate full marks for the questions

(Answer any five questions, taking one from each unit)

<u>UNIT - I</u>

- (a) Define linear vector space. What is meant by the field of the linear vector space ? 2+1=3
 - (b) Show that an arbitrary non-trivial vector V in V^n space can be expressed uniquely as a linear combination of *n* linearly independent vectors in V^n . 5
 - (c) What is orthonormal basis? Show that in such a basis the inner product of two vectors is completely determined by the components of these two vectors in that basis. 1+3=4

^{***}

- (d) If |e_i > is a given orthonormal basis ket vector, how can you find the components of any vector |v > in that basis?
- 2. (a) Write the commutation relation between two operators Ω and Θ . When these two operators are said to commute? 2
 - (b) Define the following terms 2+2=4(i) Inverse of an operator(ii) Adjoint of an operator
 - (c) What is a unitary operator? Show that unitary operator preseve the inner product between vectors they act on.
 1+3=4
 - (d) Write down Schwartz inequality relation for two areal integrable functions. Prove the in equality. 1+3=4

<u>UNIT - II</u>

- 3. (a) What are single and multiple valued of function? Give an example of multiple valued function explaining different branche of it. 1+3=4
 - (b) Define analytic function. When a function can be analytic in a region? Prove the necessity of Cauchy-Riemann equations. 1+2+3=6

<u>UNIT - IV</u>

- 7. (a) Discuss the effect of changing origin and scale on Simpson's 1/3 and 3/8 rule. 7
 - (b) Estimate the value of $\int_{0}^{\pi/2} \sin x \, dx \quad \text{by}$
 - (i) Trapezoidal rule
 - (ii) Simpson's rule using 11 ordinates. 3+4=7
- 8. (a) What is meant by roots of a function? How do you estimate the roots of a given function? Explain the Bisection and Newton Raphson methods for estimating roots of a function. Using Newton Raphson method find the root of $f(x) = \cos x - x$ 1+1+2+3+3=10
 - (b) Discuss the Range Kutta Method for solution of first order differential equations. 4

<u>UNIT - V</u>

- 9. Prove that
 - (i) $\nabla^2 (uv) = u \nabla^2 v + 2 \nabla u \cdot \nabla v + v \nabla^2 u$ 2
 - (ii) $\nabla^2(1/r) = 0$ where, $r^2 = x^2 + y^2 + z^2$ 3

(i) $f(t) = \sin \frac{\pi t}{T}$ 2+4

(ii)
$$f(t) = \left(\frac{t^2}{T^2} \right)$$

(b) Find the Fourier transform of 4 (i) $\frac{1}{x^2 + a^2}$

ii)
$$e^{-r^2/a^2}$$

where *a* is a constant and $r^2 = x^2 + y^2 + z^2$

- (c) Find the Laplace transform of 4 (i) $F(t) = e^{at} \operatorname{Sin} bt$ (ii) $F(t) = e^{at} \operatorname{Cos} bt$
- 6. (a) Define integral transform of a function. 2
 - (b) Find the Laplace transform of $3x^{2}=6$
 - (i) t^{n}
 - (ii) e^{at}
 - (iii) sin ht
 - (c) State the condition under which a function can be expanded in the form of a Fourier series.
 Express the following function in a Fourier series.
 2+4=6

F (x) = $x + x^2$; $-\pi < x < \pi$

- (c) Given $(x \operatorname{Sin} y y \operatorname{Cos} y) e^{-x} = u$
 - (i) Prove that u is a harmonic function
 - (ii) Find v such that the function f(z) = u + ivis analytic. 2+2=4
- 4. (a) Prove the Cauchy's integral theorem

$$\oint_e f(z) \, dz = 0$$

if f(z) is analytic with derivative f'(z) which is continuous at all points inside the curve C. 3

- (b) Expand f(z) = Sin z in a Taylor series about $z = \pi/4$ 3
- (c) Find the Laurent series about the indicated singularity for a given functions 2+2=4
 (i) e^{2z}/(z-1)³; z = 1
 (ii) (z-3) sin 1/(z+2); z = -2
- (d) Evaluate

 $\frac{1}{2\pi l}\oint \frac{e^{zt}}{z^2\left(z^2+2z+2\right)}\,dz$

around the circle with |z|=3

<u>UNIT - III</u>

5. (a) Discuss the role of Fourier series in Physics. Obtain fourier series of expansions of