2017/EVEN/07/20/BSCH-801/593

UG Even Semester (CBCS) Exam., May-2017

CHEMISTRY

(Honours)

(8th Semester)

Course No. : BSCH-801

(Organic Chemistry)

Full Marks : 50 Pass Marks : 20

Time : 2 hours

The figures in the margin indicate full marks for the questions

- **1.** (*a*) Define chromophore and auxochrome with suitable examples. 3
 - (b) Calculate the $_{max}$ of the following using Woodward rules : $2 \times 2=4$

(Turn Over)

(2)

(c) What happens on absorption of infrared and UV radiation by a molecule?

OR

- **2.** (a) Explain fingerprint region with example. 3
 - (b) Explain the effect of intramolecular and intermolecular hydrogen bondings on the position of IR absorption frequency. Illustrate your answer with suitable example.
 - *(c)* Discuss the effect of ring size on the carbonyl absorption frequency (IR) in cyclic ketones.
- **3.** (a) Compare the IR frequencies of cyclohexanecarboxaldehyde and benzaldehyde. 3
 - (b) Calculate the number of NMR signals for the following compounds : $1\frac{1}{2}\times2=3$ CH₃

(c) Why the carbonyl (>C=O) absorption frequency in benzamide is at 1693 cm¹ whereas in phenyl acetate it is at 1730 cm¹?

J7/1974

(Continued)

4

3

3

OR

- **4.** (*a*) What is meant by the term chemical shift?
 - (b) Describe with examples the various factors which effect the magnitude of chemical shift.
 - (c) A compound with molecular formula $C_8H_6O_2$ gives the following signals in the NMR spectrum :

8.06 (4*H*, m), 10.15 (2*H*, s) no D_2O exchangeable

Identify the compound.

(d) Calculate the number of NMR signals for the following compounds :

(i)
$$H_3C$$
 CH_3 CH_3
(ii) H_3C CH_2 O CH_2 O CH_2 O CH_3

- **5.** (*a*) Explain equivalent and non-equivalent protons.
 - (b) What are the necessary conditions for the nuclei to be NMR active?2

J7**/1974**

2

3

3

2

2

- (4)
- (c) Calculate the index of unsaturation (IOU) or DBE for the compounds with molecular formula :
 - *(i)* C₁₁H₁₄O
 - (ii) C₆H₇N
- (d) A compound with molecular formula $C_{15}H_{24}O$ gives the following signals in the NMR spectrum :
 - 1.47 (18*H*, s), 2.29 (3*H*, s), 4.99 (1*H*, broad singlet), 7 (2*H*, s)

Identify the compound.

4

2

OR

6. (a) Why sodium ethoxide cannot be treated as Grignard reagent? 2

(b) Complete the following reactions :
$$2 \times 3=6$$

(i) $3 \text{ EtMgBr} + (\text{EtO})_2 \text{CO} \xrightarrow{1) \text{Et}_2 \text{O}} ?$

(ii)
$$C_6H_{11}MgBr + Br-CH_2 \xrightarrow{Br} CH_2 \xrightarrow{Et_2O}$$
?

(iii) ClCH₂CO₂Et + 2 RMgX
$$\xrightarrow{1)$$
 Et₂O
2) H⁺ ?

(c) Write a short note on organolithium compounds. 2

J7**/1974**

(Continued)

(5)

- 7. (a) Starting with EtOH and n Pr-OH, prepare pent-2-ene via a Grignard reagent. Is there more than one way? If so, which is the best and why?4
 - (b) Describe the abnormality of Grignard reagent with suitable example.
 - (c) Complete the reaction :

PhMgBr + MeO—CH₂—CN
$$\frac{1)$$
 Et₂O
2) H⁺ ?

- OR
- **8.** Complete the following reactions with mechanism : $2\frac{1}{2}\times4=10$
 - (*i*) Benzaldehyde + Ethanolic KCN \longrightarrow ?

(6)

- 9. (a) Treatment of Me₂C=CHCH₂CH₂Cl with CaCO₃—H₂O gives cyclopropyldimethylmethanol. Suggest a mechanism.
 - *(b)* Give the mechanism for the following conversion :

 $\xrightarrow{OH} \xrightarrow{H^+} A \text{ cyclohexanone}$ derivative

4

(c) Draw all possible conformations of 1,3-dibromocyclohexane.2

OR

- **10.** Write short notes on the following : $2\frac{1}{2} \times 4 = 10$
 - (a) Sigmatropic rearrangement
 - (b) Baeyer-Villiger oxidation
 - (c) Pinacol-pinacolone rearrangement
 - (d) Beckmann rearrangement

* * *

4

2