2017/EVEN/07/20/BSPP/BSCP-603/590

UG Even Semester (CBCS) Exam., May-2017

(Pass)

(6th Semester)

Course No. : BSED-603A

Full Marks : 50 Pass Marks : 20

Time : 2 hours

The figures in the margin indicate full marks for the questions

Physics Pass students will answer BSPP-603 and Chemistry Pass students will answer BSCP-603

PHYSICS

(Pass)

Course No. : BSPP-603

(Quantum Mechanics, Atomic and Nuclear Physics, Crystallography and Electronics)

Answer **one** question from each Unit

Unit—I

- **1.** (a) Point out the origin of quantum mechanics. 3
 - (b) Discuss the properties of matter waves. 7

J7/1971 (Turn Over)

(2)

2.	(a)	State and prove Heisenberg's uncertainty principle.	7				
	(b)	Discuss the complementary principle.	3				
UNIT—II							
3.	(a)	Write down the effect of nuclear motion on atomic spectra.	7				
	(b)	Discuss the case of reduced mass.	3				
4.	(a)	What is ionization potential? Find the expression for it. 2+5	=7				
	(b)	State Moseley's law.	3				
Unit—III							
5.	(a)	State the law of successive disintegration.	3				
	(b)	Find the expression for size of nucleus.	7				
6.	(a)	Write the construction and working of cyclotron.	7				
	(b)	Explain geo-magnetic effect.	3				
UNIT—IV							
7.	(a)	Define Miller indices and explain its representation in crystal plane.	7				
J7 /1971		(Continued	d)				

(3)

Deduce the Miller indices of a plane which cuts off intercepts in the ratio 1a:3b: 2c along the three axes, where <i>a</i> , <i>b</i> and <i>c</i> are primitives.	3		
Write down the different types of crystal structures.	5	1.	(a)
Discuss the classification of crystals based on the nature of structures.	5		
UNIT—V			(b)
Write down the characteristic curve of a vacuum diode.	7		
Define space charge.	3		(c)
Define NAND gate. Write its truth table and circuit symbol.	7		
State de Morgan's theorem.	3	2.	(a)
			(b)
			(c)

(4)

CHEMISTRY

(Pass)

Course No. : BSCP-603

- (a) Derive the expression of the rate constant with time for a radioactive reaction. What is half-life period? Give expression.
 - (b) Half-life period of radium (atomic mass 226) is 1600 years. What is the disintegration per second of 1 g of radium?
 3
 - (c) How many and particles are emitted in the decay of $^{238}_{92}$ U to $^{206}_{82}$ Pb? 2

OR

- *. (a)* Explain Born-Haber cycle to determine lattice energy of NaCl crystal. 4
 - (b) At room temperature, Po crystallizes in PCC. If $a \ 3 \ 36 \ \text{\AA}$, calculate the theoretical density of Po (molecular weight of Po 209 g mol⁻¹). 3
 - (c) What is point defect? Define Schottky and Frenkel defects with examples. 3

(b)

8. (a)

9. (a)

10. (a)

(b)

(b)

(b)

5

- **3.** (a) Describe the preparation of Portland cement. Write down its approximate composition.
 - (b) How is paper manufactured industrially?

4

3

4

4

3

(c) Write down one method of preparation of mono and tricalcium phosphate. Give their uses.3

OR

- **4.** (a) Describe briefly the ozone-layer depletion and its effects on the environment.
 - (b) What are greenhouse gases? How do greenhouse gases play a role in global warming?3
 - (c) Explain the causes and consequences of acid rain.3
- **5.** (a) Define epimerization and mutarotation of carbohydrates with suitable examples.
 - (b) What happens, when D-glucose is treated with—
 - (i) bromine water;
 - *(ii)* HCN;
 - (iii) HNO₃?

(Turn Over)

- (6)
- (c) Describe the secondary structure of protein. 3

OR

- 6. (a) Write short notes on :
 (i) Carbonization of coal
 - (ii) Synthetic petrol
 - (iii) Cracking
 - (b) Write the method of preparation of phenolphthalein and methyl orange.
- 7. (a) Write short notes on : 9
 - (i) Column chromatography
 - (ii) Paper chromatography
 - (iii) Thin-layer chromatography
 - (b) What is meant by $R_{\rm f}$ value? 1

OR

- 8. (a) Using Woodward rule, calculate the max value of the following compounds : 3
 - (i) CH_3 —CH=CH—CH=CH— CH_3

J7**/1971**

(Continued)

J7**/1971**

(7)

	(b)	Calculate the molar absorptivity of a solution of concentration $0.05 M$ having path length 1 cm. The absorbance of the solution is 1.5. What would be the value of absorbance of the same solution with double concentration?	4
	(c)	What are shielding and deshielding of protons? Explain with examples.	3
9.	(a)	Identify the extensive and intensive properties of the following : Mass, Density, Surface tension, Energy	2
	(b)	What is molar heat capacity? Show how R is related to C_p and C_v .	3
	(c)	Show the variation of free energy with temperature and pressure.	3
	(d)	Calculate the free energy change (G) which occurs when 1 mole of an ideal gas expands reversibly and isothermally at 37 °C from an initial volume of 55 dm ³ to 100 dm ³ .	2
		OR	
10.	(a)	Write short notes on : (i) Photoelectric effect (ii) Compton effect	4

(8)

(b) Write down de Broglie hypothesis. The speed of an electron is 1 2 10⁶ m/s. What is its de Broglie wave length?

3

3

(c) What is Heisenberg's uncertainty principle? Calculate the uncertainty in the velocity of an electron whose uncertainty in position is 0 1 nm. (Mass of electron = 9 1 10 31 kg, h 6 63 10 34 Js)

 $\star \star \star$